
Sarah C Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7054514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron Paramagnetic Resonance Studies of Copper Ion-Exchanged ZSM-5. The Journal of Physical Chemistry, 1994, 98, 11533-11540.	2.9	302
2	Nanocrystalline Zeolites and Zeolite Structures:  Synthesis, Characterization, and Applications. Journal of Physical Chemistry C, 2007, 111, 18464-18474.	3.1	280
3	Synthesis, Characterization, and Adsorption Properties of Nanocrystalline ZSM-5. Langmuir, 2004, 20, 8301-8306.	3.5	213
4	An Infrared Study of NO Decomposition over Cu-ZSM-5. Journal of Catalysis, 1995, 157, 592-602.	6.2	209
5	Silica nanoparticle-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environmental Science: Nano, 2016, 3, 56-66.	4.3	128
6	Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Microporous and Mesoporous Materials, 2011, 137, 92-100.	4.4	125
7	Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environmental Science: Nano, 2014, 1, 200-213.	4.3	114
8	Size-Dependent Properties of Nanocrystalline Silicalite Synthesized with Systematically Varied Crystal Sizes. Langmuir, 2004, 20, 4696-4702.	3.5	109
9	Aspirin Loading and Release from MCM-41 Functionalized with Aminopropyl Groups via Co-condensation or Postsynthesis Modification Methods. Journal of Physical Chemistry C, 2012, 116, 18358-18366.	3.1	97
10	EPR Study of Copper-Exchanged Zeolites:  Effects of Correlated g- and A-Strain, Si/Al Ratio, and Parent Zeolite. Journal of Physical Chemistry B, 2000, 104, 6568-6575.	2.6	96
11	Chemical Insight into the Adsorption of Chromium(III) on Iron Oxide/Mesoporous Silica Nanocomposites. Langmuir, 2015, 31, 7553-7562.	3.5	93
12	Development of Improved Materials for Environmental Applications:Â Nanocrystalline NaY Zeolites. Environmental Science & Technology, 2005, 39, 1214-1220.	10.0	88
13	Chromate adsorption on bifunctional, magnetic zeolite composites. Microporous and Mesoporous Materials, 2010, 130, 197-202.	4.4	84
14	Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 2017, 239, 444-452.	4.4	82
15	Carbon dioxide (C16O2 and C18O2) adsorption in zeolite Y materials: effect of cation, adsorbed water and particle size. Energy and Environmental Science, 2009, 2, 401.	30.8	76
16	Surface Adsorption of Suwannee River Humic Acid on TiO ₂ Nanoparticles: A Study of pH and Particle Size. Langmuir, 2018, 34, 3136-3145.	3.5	76
17	Effect of Crystal Size and Surface Functionalization on the Cytotoxicity of Silicalite-1 Nanoparticles. Chemical Research in Toxicology, 2009, 22, 1359-1368.	3.3	70
18	Loading and release of 5-fluorouracil from HY zeolites with varying SiO2/Al2O3 ratios. Microporous and Mesoporous Materials, 2013, 167, 182-187.	4.4	68

#	Article	IF	CITATIONS
19	DFT calculations of EPR parameters of transition metal complexes: Implications for catalysis. Catalysis Today, 2005, 105, 122-133.	4.4	66
20	Selective catalytic reduction of NO2 with urea in nanocrystalline NaY zeolite. Journal of Catalysis, 2005, 234, 401-413.	6.2	65
21	Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater. Journal of Hazardous Materials, 2016, 317, 494-502.	12.4	63
22	Density Functional Theory Calculations of the Electron Paramagnetic Resonance Parameters for VO2+ Complexes. Journal of Physical Chemistry A, 2003, 107, 1872-1878.	2.5	61
23	An Experimental and Computational Study of the Loading and Release of Aspirin from Zeolite HY. Journal of Physical Chemistry C, 2012, 116, 21382-21390.	3.1	56
24	Photooxidation of 1-Alkenes in Zeolites:  A Study of the Factors that Influence Product Selectivity and Formation. Journal of the American Chemical Society, 1999, 121, 5063-5072.	13.7	55
25	NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environmental Science: Nano, 2016, 3, 15-27.	4.3	53
26	CO Adsorption as a Probe of Acid Sites and the Electric Field in Alkaline Earth Exchanged Zeolite Beta Using FT-IR and ab Initio Quantum Calculations. Journal of Physical Chemistry B, 1999, 103, 5058-5062.	2.6	48
27	Combining Theory and Experiment to Interpret the EPR Spectra of VO2+-Exchanged Zeolites. Journal of Physical Chemistry A, 2001, 105, 4563-4573.	2.5	47
28	Toxicity of Silica Nanomaterials: Zeolites, Mesoporous Silica, and Amorphous Silica Nanoparticles. Advances in Molecular Toxicology, 2010, 4, 223-266.	0.4	47
29	From nanoparticles to hierarchical structures: Controlling the morphology of zeolite beta. Microporous and Mesoporous Materials, 2011, 143, 97-103.	4.4	46
30	DFT Calculations of Proton Hyperfine Coupling Constants for [VO(H2O)5]2+:  Comparison with Proton ENDOR Data. Journal of Physical Chemistry A, 2001, 105, 8333-8338.	2.5	45
31	Nano–Bio Interactions of Porous and Nonporous Silica Nanoparticles of Varied Surface Chemistry: A Structural, Kinetic, and Thermodynamic Study of Protein Adsorption from RPMI Culture Medium. Langmuir, 2016, 32, 731-742.	3.5	45
32	Variable-Temperature Electron Paramagnetic Resonance Studies of Copper-Exchanged Zeolites. Journal of Catalysis, 1999, 182, 208-218.	6.2	43
33	Microscopic and Macroscopic Characterization of Organosilane-Functionalized Nanocrystalline NaZSM-5. Langmuir, 2005, 21, 7009-7014.	3.5	43
34	FTIR study of the selective catalytic reduction of NO2 with ammonia on nanocrystalline NaY and CuY. Journal of Molecular Catalysis A, 2008, 285, 48-57.	4.8	43
35	Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs. Toxicology Letters, 2016, 241, 207-215.	0.8	43
36	Solvent effects in the development of a drug delivery system for 5-fluorouracil using magnetic mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2017, 237, 108-116.	4.4	42

#	Article	IF	CITATIONS
37	Catalytic reduction of NO2 in nanocrystalline NaY zeolite. Journal of Molecular Catalysis A, 2005, 227, 25-35.	4.8	39
38	Adsorption and Thermal Reaction of DMMP in Nanocrystalline NaY. Langmuir, 2006, 22, 11077-11084.	3.5	37
39	Photooxidation of Toluene andp-Xylene in Cation-Exchanged Zeolites X, Y, ZSM-5, and Beta:Â The Role of Zeolite Physicochemical Properties in Product Yield and Selectivity. Journal of Physical Chemistry B, 2000, 104, 5706-5714.	2.6	36
40	Adsorption, desorption and thermal oxidation of 2-CEES on nanocrystalline zeolites. Microporous and Mesoporous Materials, 2007, 100, 77-86.	4.4	35
41	A Kinetic Study of the Thermal and Photochemical Partial Oxidation of Cyclohexane with Molecular Oxygen in Zeolite Y. Journal of Catalysis, 2001, 204, 440-449.	6.2	33
42	Density Functional Theory Investigation of EPR Parameters for Tetragonal Cu(II) Model Complexes with Oxygen Ligands. Journal of Physical Chemistry A, 2009, 113, 4305-4312.	2.5	31
43	Sequestration of U(VI) from Acidic, Alkaline, and High Ionic-Strength Aqueous Media by Functionalized Magnetic Mesoporous Silica Nanoparticles: Capacity and Binding Mechanisms. Environmental Science & Technology, 2017, 51, 14330-14341.	10.0	31
44	Adsorption and Photochemical Properties of a Molecular CO ₂ Reduction Catalyst in Hierarchical Mesoporous ZSM-5: An In Situ FTIR Study. Journal of Physical Chemistry Letters, 2012, 3, 486-492.	4.6	30
45	Mechanochemical reaction pathways in solvent-free synthesis of ZSM-5. Microporous and Mesoporous Materials, 2019, 276, 23-28.	4.4	30
46	An FT-IR Study of NO2 Reduction in Nanocrystalline NaY Zeolite: Effect of Zeolite Crystal Size and Adsorbed Water. Catalysis Letters, 2005, 103, 23-32.	2.6	29
47	Ligand Characterization of Covalently Functionalized Mesoporous Silica Nanoparticles: An NMR Toolbox Approach. Journal of Physical Chemistry C, 2014, 118, 29943-29951.	3.1	29
48	Chromate adsorption on amine-functionalized nanocrystalline silicalite-1. Microporous and Mesoporous Materials, 2008, 116, 365-369.	4.4	28
49	Mechanochemically-assisted solvent-free and template-free synthesis of zeolites ZSM-5 and mordenite. Nanoscale Advances, 2019, 1, 3918-3928.	4.6	28
50	Characterization of Ruthenium-Exchanged Zeolites (Beta, Y, and ZSM-5) by EPR Spectroscopy. Journal of Catalysis, 2000, 196, 352-361.	6.2	26
51	Silicalite nanoparticles that promote transgene expression. Nanotechnology, 2008, 19, 175103.	2.6	26
52	Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications. Langmuir, 2011, 27, 2904-2909.	3.5	26
53	DFT calculations of the EPR parameters for Cu(ii) DETA imidazole complexes. Physical Chemistry Chemical Physics, 2009, 11, 8266.	2.8	23
54	Computational Study of the Effect of the Imidazole Ring Orientation on the EPR Parameters for Vanadylâ^'Imidazole Complexes. Journal of Physical Chemistry A, 2002, 106, 10444-10451.	2.5	22

#	Article	IF	CITATIONS
55	Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course. Journal of Chemical Education, 2006, 83, 1029.	2.3	22
56	Interpretation of the EPR Spectra of Nitrogen-Containing Compounds Adsorbed on Copper-Exchanged Zeolites. Journal of Physical Chemistry B, 2000, 104, 8848-8854.	2.6	21
57	Surface adsorption of Nordic aquatic fulvic acid on amine-functionalized and non-functionalized mesoporous silica nanoparticles. Environmental Science: Nano, 2018, 5, 2162-2171.	4.3	21
58	Radical Anion Complexes of Tris(1,3-diphenyltriazenido)aluminum. Journal of the American Chemical Society, 1995, 117, 1736-1745.	13.7	20
59	Solid-State Nuclear Magnetic Resonance Study of Acetone Oxime Adsorbed on CuZSM-5 and on HZSM-5. Journal of Catalysis, 1999, 182, 244-256.	6.2	20
60	Photooxidation of cyclohexane and cyclohexene in BaY. Journal of Molecular Catalysis A, 2003, 194, 169-180.	4.8	20
61	Two-Dimensional Pulsed EPR Studies of Vanadium-Exchanged ZSM-5. Journal of Physical Chemistry B, 2004, 108, 16128-16134.	2.6	20
62	Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH. Langmuir, 2010, 26, 6695-6701.	3.5	20
63	Visible light photoreduction of Cr(VI) in aqueous solution using iron-containing zeolite tubes. Microporous and Mesoporous Materials, 2007, 100, 340-349.	4.4	19
64	Solid-State MAS NMR Studies of Sulfonic Acid-Functionalized SBA-15. Applied Magnetic Resonance, 2007, 32, 513-526.	1.2	19
65	Selective photooxidation reactions in zeolites X, Y and ZSM-5. Catalysis Letters, 1997, 48, 199-202.	2.6	18
66	Magnetic resonance studies of reactions of urea and nitric oxide on FeZSM-5, HZSM-5 and silicalite. Journal of Molecular Catalysis A, 2004, 212, 329-336.	4.8	18
67	Electrospun hematite nanofiber/mesoporous silica core/shell nanomaterials as an efficient adsorbent for heavy metals. RSC Advances, 2016, 6, 90516-90525.	3.6	17
68	Surface-Selective Solution NMR Studies of Functionalized Zeolite Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 425-429.	4.6	16
69	Quantification of gabapentin polymorphs in gabapentin/excipient mixtures using solid state 13 C NMR spectroscopy and X-ray powder diffraction. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 29-36.	2.8	16
70	Solvent-free synthesis of crystalline ZSM-5 zeolite: Investigation of mechanochemical pre-reaction impact on growth of thermally stable zeolite structures. Solid State Sciences, 2019, 94, 15-22.	3.2	16
71	DFT Calculations of EPR Parameters for Copper(II)-Exchanged Zeolites Using Cluster Models. Journal of Physical Chemistry A, 2010, 114, 589-594.	2.5	15
72	Relativistic DFT Calculations of Copper Hyperfine Coupling Constants:  Effect of Spinâ^'Orbit Coupling. Journal of Physical Chemistry A, 2003, 107, 5583-5587.	2.5	14

#	Article	IF	CITATIONS
73	Transition metal and organic functionalization of hollow zeolite structures. Microporous and Mesoporous Materials, 2008, 113, 554-561.	4.4	14
74	Insight into the copper coordination environment in the prion protein through density functional theory calculations of EPR parameters. Journal of Biological Inorganic Chemistry, 2009, 14, 547-557.	2.6	14
75	Density Functional Theory Calculations of Nitrogen Hyperfine and Quadrupole Coupling Constants in Oxovanadium(IV) Complexes. Journal of Physical Chemistry A, 2003, 107, 4735-4740.	2.5	12
76	Magnetic Resonance Investigation of Vanadia and Vanadiumâ^'Molybdenum Gels Synthesized with Peroxovanadate Precursors. Journal of Physical Chemistry B, 2005, 109, 1756-1762.	2.6	12
77	One-pot synthesis of iron oxide mesoporous silica core/shell nanocomposites. Microporous and Mesoporous Materials, 2015, 204, 173-179.	4.4	12
78	ATR–FTIR Spectroscopy in the Undergraduate Chemistry Laboratory. Part II: A Physical Chemistry Laboratory Experiment on Surface Adsorption. Journal of Chemical Education, 2008, 85, 282.	2.3	11
79	Development of Porous Nanomaterials for Applications in Drug Delivery and Imaging. ACS Symposium Series, 2012, , 239-258.	0.5	11
80	Hyperfine and Quadrupolar Interactions in Vanadyl Proteins and Model Complexes: Theory and Experiment. Biological Magnetic Resonance, 2010, , 371-409.	0.4	10
81	Fiber and film formation by self-assembly of colloidal silicalite-1 and copper coated silicalite-1 nanocrystals. Microporous and Mesoporous Materials, 2006, 88, 77-83.	4.4	9
82	A 13C and 15N Solid State NMR Study of the Reactions of Acetone Oxime Adsorbed on FeZSM-5. Catalysis Letters, 2002, 78, 243-249.	2.6	8
83	Title is missing!. Catalysis Letters, 2000, 70, 43-50.	2.6	7
84	Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	6
85	Electronic Structure of the Tris(1,3-diphenyltriazenido)aluminum Radical Anion: A Theoretical and Experimental ESEEM and EPR Study. Journal of the American Chemical Society, 1995, 117, 1746-1753.	13.7	5
86	Incorporation of germanium into the framework of nanocrystalline faujasite. Microporous and Mesoporous Materials, 2013, 180, 229-234.	4.4	4
87	Development of Hands-on Nanotechnology Content Materials: Undergraduate Chemistry and Beyond. ACS Symposium Series, 2010, , 87-99.	0.5	3
88	NMR Developments and Applications. Analytical Chemistry, 2017, 89, 1391-1391.	6.5	3
89	Applications of Zeolites in Environmental Catalysis. , 2005, , 269-286.		3
90	Zeolites and Mesoporous Silica: From Greener Synthesis to Surface Chemistry of Environmental and Biological Interactions 2019 375 397		2

Biological Interactions. , 2019, , 375-397.

#	Article	IF	CITATIONS
91	Recent Advances in Connecting Structure, Dynamics, and Function of Biomolecules by NMR. Journal of Physical Chemistry B, 2018, 122, 4195-4195.	2.6	1
92	Building Bridges between Sustainability and Chemistry in Education and Outreach. ACS Symposium Series, 2020, , 45-53.	0.5	1
93	Nanocatalysts for Environmental Technology. ACS Symposium Series, 2004, , 268-271.	0.5	0
94	DFT Calculations of EPR Parameters of Transition Metal Complexes: Implications for Catalysis. ChemInform, 2005, 36, no.	0.0	0
95	New Physical Insights: Magnetic Resonance Methods and Applications. Journal of Physical Chemistry A, 2017, 121, 6199-6199.	2.5	0
96	New Physical Insights: Magnetic Resonance Methods and Applications. Journal of Physical Chemistry C, 2017, 121, 17560-17560.	3.1	0
97	New Physical Insights: Magnetic Resonance Methods and Applications. Journal of Physical Chemistry B, 2017, 121, 7749-7749.	2.6	0