Arlene H Sharpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7054377/publications.pdf

Version: 2024-02-01

299 papers 72,360 citations

996 114 h-index 259 g-index

308 all docs 308 docs citations

308 times ranked 59727 citing authors

#	Article	IF	CITATIONS
1	Liver stromal cells restrict macrophage maturation and stromal IL-6 limits the differentiation of cirrhosis-linked macrophages. Journal of Hepatology, 2022, 76, 1127-1137.	1.8	12
2	TCR-sequencing in cancer and autoimmunity: barcodes and beyond. Trends in Immunology, 2022, 43, 180-194.	2.9	20
3	PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF- \hat{I}^2 receptor I versus II. Cell Reports, 2022, 38, 110349.	2.9	15
4	Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate. Nature Immunology, 2022, 23, 446-457.	7.0	37
5	The Programmed Death-1 Pathway Counter-Regulates Inflammation-Induced Osteoclast Activity in Clinical and Experimental Settings. Frontiers in Immunology, 2022, 13, 773946.	2.2	9
6	CRISPR Screens to Identify Regulators of Tumor Immunity. Annual Review of Cancer Biology, 2022, 6, 103-122.	2.3	5
7	When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. Science Advances, 2022, 8, eabj3286.	4.7	35
8	PD-L1–PD-1 interactions limit effector regulatory T cell populations at homeostasis and during infection. Nature Immunology, 2022, 23, 743-756.	7.0	47
9	Microenvironmental Landscape of Human Melanoma Brain Metastases in Response to Immune Checkpoint Inhibition. Cancer Immunology Research, 2022, 10, 996-1012.	1.6	18
10	Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ TÂcells. Cell Metabolism, 2022, 34, 1137-1150.e6.	7.2	78
11	Concurrent Dexamethasone Limits the Clinical Benefit of Immune Checkpoint Blockade in Glioblastoma. Clinical Cancer Research, 2021, 27, 276-287.	3.2	100
12	Pharmacologic Screening Identifies Metabolic Vulnerabilities of CD8+ T Cells. Cancer Immunology Research, 2021, 9, 184-199.	1.6	74
13	Expression of T-Cell Exhaustion Molecules and Human Endogenous Retroviruses as Predictive Biomarkers for Response to Nivolumab in Metastatic Clear Cell Renal Cell Carcinoma. Clinical Cancer Research, 2021, 27, 1371-1380.	3.2	49
14	Inhibitory signaling sustains a distinct early memory CD8 ⁺ T cell precursor that is resistant to DNA damage. Science Immunology, 2021, 6, .	5.6	52
15	Abstract IA16: Discovery of new immunotherapy targets and mechanisms leveraging CRISPR., 2021,,.		0
16	Epitope spreading toward wild-type melanocyte-lineage antigens rescues suboptimal immune checkpoint blockade responses. Science Translational Medicine, 2021, 13, .	5.8	54
17	Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment. Journal of Experimental Medicine, 2021, 218, .	4.2	74
18	Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms. Journal of Clinical Investigation, 2021, 131, .	3.9	84

#	Article	IF	CITATIONS
19	Editorial overview: Cancer Immunotherapy: Are we there yet?. Current Opinion in Immunology, 2021, 69, iii-v.	2.4	1
20	The aging lung: Physiology, disease, and immunity. Cell, 2021, 184, 1990-2019.	13.5	175
21	Emerging concepts in PD-1 checkpoint biology. Seminars in Immunology, 2021, 52, 101480.	2.7	84
22	Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell, 2021, 39, 632-648.e8.	7.7	230
23	Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nature Immunology, 2021, 22, 809-819.	7.0	113
24	Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell, 2021, 184, 4495-4511.e19.	13.5	201
25	PD-1 Blockade on Tumor Microenvironment-Resident ILC2s Promotes TNF-α Production and Restricts Progression of Metastatic Melanoma. Frontiers in Immunology, 2021, 12, 733136.	2.2	16
26	A Cre-driven allele-conditioning line to interrogate CD4+ conventional TÂcells. Immunity, 2021, 54, 2209-2217.e6.	6.6	8
27	Development of preclinical and clinical models for immune-related adverse events following checkpoint immunotherapy: a perspective from SITC and AACR., 2021, 9, e002627.		15
28	Spatially organized multicellular immune hubs in human colorectal cancer. Cell, 2021, 184, 4734-4752.e20.	13.5	256
29	PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. Journal of Experimental Medicine, 2021, 218, .	4.2	151
30	Understanding adverse events of immunotherapy: A mechanistic perspective. Journal of Experimental Medicine, 2021, 218, .	4.2	22
31	Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses. Cancer Immunology Research, 2021, 9, 1465-1475.	1.6	8
32	The double-edged sword: Harnessing PD-1 blockade in tumor and autoimmunity. Science Immunology, 2021, 6, eabf4034.	5.6	22
33	Overexpression of PD-1 on T cells promotes tolerance in cardiac transplantation via ICOS-dependent mechanisms. JCI Insight, 2021, 6, .	2.3	11
34	Prevention of CAR-T-cell dysfunction. Nature Biomedical Engineering, 2020, 4, 16-17.	11.6	2
35	Programmed death ligand 2 $\hat{a}\in$ A link between inflammation and bone loss in rheumatoid arthritis. Journal of Translational Autoimmunity, 2020, 3, 100028.	2.0	10
36	The PD-1 Pathway Regulates Development and Function of Memory CD8+ T Cells following Respiratory Viral Infection. Cell Reports, 2020, 31, 107827.	2.9	72

#	Article	IF	CITATIONS
37	PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nature Communications, 2020, 11, 3998.	5.8	101
38	The multifaceted functions of follicular regulatory T cells. Current Opinion in Immunology, 2020, 67, 68-74.	2.4	42
39	JEM women in STEM: Unique journeys with a common purpose. Journal of Experimental Medicine, 2020, 217, .	4.2	1
40	A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23684-23694.	3.3	32
41	Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell, 2020, 183, 1848-1866.e26.	13.5	347
42	T Follicular Regulatory Cell–Derived Fibrinogen-like Protein 2 Regulates Production of Autoantibodies and Induction of Systemic Autoimmunity. Journal of Immunology, 2020, 205, 3247-3262.	0.4	13
43	Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nature Medicine, 2020, 26, 909-918.	15.2	488
44	IMMU-09. CONCURRENT DEXAMETHASONE LIMITS THE CLINICAL BENEFIT OF IMMUNE CHECKPOINT BLOCKADE IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii106-ii106.	0.6	1
45	Immunogenomic characterization of advanced clear cell renal cell carcinoma treated with PD-1 blockade Journal of Clinical Oncology, 2020, 38, 5010-5010.	0.8	2
46	Evaluation of predictive biomarkers for nivolumab in patients (pts) with metastatic clear cell renal cell carcinoma (mccRCC) from the CheckMate-025 (CM-025) trial Journal of Clinical Oncology, 2020, 38, 5023-5023.	0.8	6
47	The effects of age and systemic metabolism on anti-tumor T cell responses. ELife, 2020, 9, .	2.8	34
48	Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16971-16980.	3.3	92
49	Follicular regulatory T cells control humoral and allergic immunity by restraining early B cell responses. Nature Immunology, 2019, 20, 1360-1371.	7.0	176
50	T Cell Activation Depends on Extracellular Alanine. Cell Reports, 2019, 28, 3011-3021.e4.	2.9	117
51	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	10.6	879
52	irRECIST for the Evaluation of Candidate Biomarkers of Response to Nivolumab in Metastatic Clear Cell Renal Cell Carcinoma: Analysis of a Phase II Prospective Clinical Trial. Clinical Cancer Research, 2019, 25, 2174-2184.	3.2	80
53	FoxP3 and Ezh2 regulate Tfr cell suppressive function and transcriptional program. Journal of Experimental Medicine, 2019, 216, 605-620.	4.2	56
54	Adverse Events Following Cancer Immunotherapy: Obstacles and Opportunities. Trends in Immunology, 2019, 40, 511-523.	2.9	180

#	Article	IF	CITATIONS
55	A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nature Communications, 2019, 10, 1668.	5.8	78
56	Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nature Immunology, 2019, 20, 326-336.	7.0	1,148
57	Targeting PI3kl´ function for amelioration of murine chronic graft-versus-host disease. American Journal of Transplantation, 2019, 19, 1820-1830.	2.6	9
58	Costimulation of type-2 innate lymphoid cells by GITR promotes effector function and ameliorates type 2 diabetes. Nature Communications, 2019, 10, 713.	5.8	58
59	PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nature Immunology, 2019, 20, 1335-1347.	7.0	142
60	Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling. Nature Immunology, 2019, 20, 1668-1680.	7.0	53
61	Small-molecule BCL6 inhibitor effectively treats mice with nonsclerodermatous chronic graft-versus-host disease. Blood, 2019, 133, 94-99.	0.6	21
62	Role of PD-1 during effector CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4749-4754.	3.3	327
63	A phase II study of combined therapy with a BRAF inhibitor (vemurafenib) and interleukin-2 (aldesleukin) in patients with metastatic melanoma. Oncolmmunology, 2018, 7, e1423172.	2.1	25
64	Inhibitors of the PD-1 Pathway in Tumor Therapy. Journal of Immunology, 2018, 200, 375-383.	0.4	112
65	Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins. Cell Reports, 2018, 23, 1387-1398.	2.9	49
66	Dendritic Cell PD-L1 Limits Autoimmunity and Follicular T Cell Differentiation and Function. Journal of Immunology, 2018, 200, 2592-2602.	0.4	96
67	The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, 2018, 18, 153-167.	10.6	1,210
68	PD-L1 Prevents the Development of Autoimmune Heart Disease in Graft-versus-Host Disease. Journal of Immunology, 2018, 200, 834-846.	0.4	23
69	TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti–PD-1/anti–CTLA-4 immunotherapy. JCI Insight, 2018, 3, .	2.3	49
70	Podoplanin+ tumor lymphatics are rate limiting for breast cancer metastasis. PLoS Biology, 2018, 16, e2005907.	2.6	17
71	Defective respiration and one-carbon metabolism contribute to impaired $na\tilde{A}$ ve T cell activation in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13347-13352.	3.3	93
72	LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell, 2018, 174, 549-563.e19.	13.5	473

#	Article	IF	Citations
73	Evaluation of predictive biomarkers for nivolumab in metastatic clear cell renal cell carcinoma (mccRCC) using RECIST and immune-related (IR) RECIST Journal of Clinical Oncology, 2018, 36, 619-619.	0.8	2
74	CD160 Stimulates CD8+ T Cell Responses and Is Required for Optimal Protective Immunity to <i>Listeria monocytogenes </i> . ImmunoHorizons, 2018, 2, 238-250.	0.8	28
75	Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science, 2017, 355, 1423-1427.	6.0	753
76	Introduction to checkpoint inhibitors and cancer immunotherapy. Immunological Reviews, 2017, 276, 5-8.	2.8	151
77	Anti-Programmed Death 1 (PD1). , 2017, , 57-66.		1
78	The microRNA miR-31 inhibits CD8+ T cell function in chronic viral infection. Nature Immunology, 2017, 18, 791-799.	7.0	64
79	PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. Journal of Experimental Medicine, 2017, 214, 895-904.	4.2	614
80	B Cells Drive Autoimmunity in Mice with CD28-Deficient Regulatory T Cells. Journal of Immunology, 2017, 199, 3972-3980.	0.4	21
81	Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Research, 2017, 45, e148-e148.	6.5	77
82	In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature, 2017, 547, 413-418.	13.7	792
83	Type 2 innate lymphoid cell suppression by regulatory TÂcells attenuates airway hyperreactivity and requires inducible T-cell costimulator–inducible T-cell costimulator ligand interaction. Journal of Allergy and Clinical Immunology, 2017, 139, 1468-1477.e2.	1.5	153
84	Biology of PD-1 Checkpoint Blockade. Blood, 2017, 130, SCI-35-SCI-35.	0.6	1
85	Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation. Cell Metabolism, 2016, 24, 104-117.	7.2	282
86	Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity, 2016, 44, 955-972.	6.6	462
87	Suppression by TFR cells leads to durable and selective inhibition of B cell effector function. Nature Immunology, 2016, 17, 1436-1446.	7.0	189
88	Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature, 2016, 537, 417-421.	13.7	1,371
89	Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4 + T Cell Immunity. Immunity, 2016, 45, 333-345.	6.6	92
90	Anti-CD48 Monoclonal Antibody Attenuates Experimental Autoimmune Encephalomyelitis by Limiting the Number of Pathogenic CD4+ T Cells. Journal of Immunology, 2016, 197, 3038-3048.	0.4	13

#	Article	IF	CITATIONS
91	Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Science Signaling, 2016, 9, ra75.	1.6	41
92	Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discovery, 2016, 6, 827-837.	7.7	785
93	Enhancing the Efficacy of Checkpoint Blockade Through Combination Therapies. , 2016, , 1-39.		O
94	T follicular regulatory cells. Immunological Reviews, 2016, 271, 246-259.	2.8	261
95	Roles of CD48 in regulating immunity and tolerance. Clinical Immunology, 2016, 164, 10-20.	1.4	160
96	Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncolmmunology, 2016, 5, e1136044.	2.1	55
97	Coinhibitory Pathways in Immunotherapy for Cancer. Annual Review of Immunology, 2016, 34, 539-573.	9.5	718
98	Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model. Cancer Immunology Research, 2016, 4, 124-135.	1.6	339
99	Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. Journal of Clinical Investigation, 2016, 126, 2642-2660.	3.9	81
100	ABCB5 Identifies Immunoregulatory Dermal Cells. Cell Reports, 2015, 12, 1564-1574.	2.9	51
101	Negative Regulation of Humoral Immunity Due to Interplay between the SLAMF1, SLAMF5, and SLAMF6 Receptors. Frontiers in Immunology, 2015, 6, 158.	2.2	32
102	The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. ELife, 2015, 4, .	2.8	48
103	Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. Journal of Experimental Medicine, 2015, 212, 1125-1137.	4.2	368
104	Mitochondrial Metabolism in T Cell Activation and Senescence: A Mini-Review. Gerontology, 2015, 61, 131-138.	1.4	50
105	PD-L1 Antibodies to Its Cytoplasmic Domain Most Clearly Delineate Cell Membranes in Immunohistochemical Staining of Tumor Cells. Cancer Immunology Research, 2015, 3, 1308-1315.	1.6	114
106	The PTEN pathway in T _{regs} is a critical driver of the suppressive tumor microenvironment. Science Advances, 2015, 1, e1500845.	4.7	167
107	Transgenic Expression of CXCR3 on T Cells Enhances Susceptibility to Cutaneous Leishmania major Infection by Inhibiting Monocyte Maturation and Promoting a Th2 Response. Infection and Immunity, 2015, 83, 67-76.	1.0	9
108	Inducible RNAi in vivo reveals that the transcription factor BATF is required to initiate but not maintain CD8 ⁺ T-cell effector differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 512-517.	3.3	29

#	Article	lF	CITATIONS
109	Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nature Immunology, 2015, 16, 188-196.	7.0	347
110	Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging. Cell Reports, 2015, 12, 163-171.	2.9	112
111	T follicular regulatory cells in the regulation of B cell responses. Trends in Immunology, 2015, 36, 410-418.	2.9	261
112	ICOS:ICOS-Ligand Interaction Is Required for Type 2 Innate Lymphoid Cell Function, Homeostasis, and Induction of Airway Hyperreactivity. Immunity, 2015, 42, 538-551.	6.6	254
113	Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell, 2015, 162, 1242-1256.	13.5	507
114	Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. Journal of Experimental Medicine, 2015, 212, 1603-1621.	4.2	183
115	Ox40L–Ox40 pathway plays distinct roles in regulating Th2 responses but does not determine outcome of cutaneous leishmaniasis caused by Leishmania mexicana and Leishmania major. Experimental Parasitology, 2015, 148, 49-55.	0.5	7
116	Hepatic immune regulation by stromal cells. Current Opinion in Immunology, 2015, 32, 1-6.	2.4	22
117	In Vitro Assay to Sensitively Measure Tfr Suppressive Capacity and Tfh Stimulation of B Cell Responses. Methods in Molecular Biology, 2015, 1291, 151-160.	0.4	36
118	A phase II study of combined therapy with vemurafenib (vem) and high-dose interleukin-2 (aldesleukin;) Tj ETQq0	0.0 rgBT /	'Oyerlock 10
119	Helicobacter pylori cag Pathogenicity Island's Role in B7-H1 Induction and Immune Evasion. PLoS ONE, 2015, 10, e0121841.	1.1	32
120	CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS Pathogens, 2015, 11, e1005177.	2.1	296
121	Role of PD-1/PD-L1 in Acute and Chronic Graft Versus Host Disease. Blood, 2015, 126, SCI-8-SCI-8.	0.6	0
122	Loss of Programmed Death Ligand-1 Expression on Donor T Cells Lessens Acute Graft-Versus-Host Disease Lethality. Blood, 2015, 126, 147-147.	0.6	0
123	Inclusion of CD80 in HSV Targets the Recombinant Virus to PD-L1 on DCs and Allows Productive	1.1	23
	Infection and Robust Immune Responses. PLoS ONE, 2014, 9, e87617.	1.1	
124	Infection and Robust Immune Responses. PLoS ONE, 2014, 9, e87617. The Coinhibitory Receptor CTLA-4 Controls B Cell Responses by Modulating T Follicular Helper, T Follicular Regulatory, and T Regulatory Cells. Immunity, 2014, 41, 1026-1039.	6.6	355
124	The Coinhibitory Receptor CTLA-4 Controls B Cell Responses by Modulating T Follicular Helper, T		

#	Article	IF	Citations
127	Treg Cells Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit Proinflammatory Th1 and Th17 Cell Responses. Immunity, 2014, 40, 569-581.	6.6	702
128	GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nature Immunology, 2014, 15, 63-71.	7.0	36
129	Balance and Imbalance in the Immune System: Life on the Edge. Immunity, 2014, 41, 682-684.	6.6	33
130	Coinfection with Streptococcus pneumoniae Modulates the B Cell Response to Influenza Virus. Journal of Virology, 2014, 88, 11995-12005.	1.5	27
131	Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. Journal of Experimental Medicine, 2014, 211, 1905-1918.	4.2	182
132	RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. Journal of Experimental Medicine, 2014, 211, 943-959.	4.2	249
133	Circulating T follicular regulatory and helper cells have memory-like properties. Journal of Clinical Investigation, 2014, 124, 5191-5204.	3.9	215
134	DEC-205-mediated antigen targeting to steady-state dendritic cells induces deletion of diabetogenic CD8+ T cells independently of PD-1 and PD-L1. International Immunology, 2013, 25, 651-660.	1.8	21
135	The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nature Immunology, 2013, 14, 152-161.	7.0	428
136	PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria. Cell Reports, 2013, 5, 1204-1213.	2.9	147
137	B7h (ICOS-L) Maintains Tolerance at the Fetomaternal Interface. American Journal of Pathology, 2013, 182, 2204-2213.	1.9	30
138	Lack of PD-L1 Expression by iNKT Cells Improves the Course of Influenza A Infection. PLoS ONE, 2013, 8, e59599.	1.1	21
139	Brief Report: Increased expression of a short splice variant of CTLAâ€4 exacerbates lupus in MRL/ <i>lpr</i> lpr	6.7	7
140	BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncolmmunology, 2013, 2, e26615.	2.1	97
141	Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood, 2013, 122, 3062-3073.	0.6	156
142	Anti-Programmed Death 1 (PD1)., 2013,, 1-10.		0
143	PD-L1 and PD-L2 Protect The Heart In a T-Cell Receptor Transgenic Model Of Graft-Versus Host Disease. Blood, 2013, 122, 4479-4479.	0.6	0
144	CD80 Expression on B Cells Regulates Murine T Follicular Helper Development, Germinal Center B Cell Survival, and Plasma Cell Generation. Journal of Immunology, 2012, 188, 4217-4225.	0.4	98

#	Article	IF	CITATIONS
145	Neuronal Programmed Cell Death-1 Ligand Expression Regulates Retinal Ganglion Cell Number in Neonatal and Adult Mice. Journal of Neuro-Ophthalmology, 2012, 32, 227-237.	0.4	12
146	Overexpression of the CTLA-4 Isoform Lacking Exons 2 and 3 Causes Autoimmunity. Journal of Immunology, 2012, 188, 155-162.	0.4	25
147	PD-1 Protects against Inflammation and Myocyte Damage in T Cell-Mediated Myocarditis. Journal of Immunology, 2012, 188, 4876-4884.	0.4	218
148	Crucial Role of Granulocytic Myeloid-Derived Suppressor Cells in the Regulation of Central Nervous System Autoimmune Disease. Journal of Immunology, 2012, 188, 1136-1146.	0.4	216
149	CD28 Costimulation Regulates Genome-Wide Effects on Alternative Splicing. PLoS ONE, 2012, 7, e40032.	1.1	51
150	The SLAM family member CD48 (Slamf2) protects lupus-prone mice from autoimmune nephritis. Journal of Autoimmunity, 2011, 37, 48-57.	3.0	22
151	Anti-CD3 mAb treatment cures PDL1â^'/â^'.NOD mice of diabetes but precipitates fatal myocarditis. Clinical Immunology, 2011, 140, 47-53.	1.4	2
152	Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21182-21187.	3.3	155
153	Physiologic Control of IDO Competence in Splenic Dendritic Cells. Journal of Immunology, 2011, 187, 2329-2335.	0.4	66
154	The Programmed Death-1 Ligand 1:B7-1 Pathway Restrains Diabetogenic Effector T Cells In Vivo. Journal of Immunology, 2011, 187, 1097-1105.	0.4	159
155	Auto-antibody production and glomerulonephritis in congenic Slamf1-/- and Slamf2-/- [B6.129] but not in Slamf1-/- and Slamf2-/- [BALB/c.129] mice. International Immunology, 2011, 23, 149-158.	1.8	20
156	The Novel Costimulatory Programmed Death Ligand 1/B7.1 Pathway Is Functional in Inhibiting Alloimmune Responses In Vivo. Journal of Immunology, 2011, 187, 1113-1119.	0.4	115
157	Cutting Edge: TIGIT Has T Cell-Intrinsic Inhibitory Functions. Journal of Immunology, 2011, 186, 1338-1342.	0.4	452
158	Impairment of the Programmed Cell Death-1 Pathway Increases Atherosclerotic Lesion Development and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1100-1107.	1.1	189
159	The Role of LAT in Increased CD8 ⁺ T Cell Exhaustion in Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus 1. Journal of Virology, 2011, 85, 4184-4197.	1.5	103
160	Role of PD-1 in regulating acute infections. Current Opinion in Immunology, 2010, 22, 397-401.	2.4	125
161	The PDâ€1 pathway in tolerance and autoimmunity. Immunological Reviews, 2010, 236, 219-242.	2.8	1,902
162	PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nature Immunology, 2010, 11, 535-542.	7.0	583

#	Article	IF	Citations
163	Taming tissue-specific T cells: CTLA-4 reins in self-reactive T cells. Nature Immunology, 2010, 11, 109-111.	7.0	27
164	Regulation of T-Cell Chemotaxis by Programmed Death-Ligand 1 (PD-L1) in Dry Eye–Associated Corneal Inflammation. , 2010, 51, 3418.		57
165	PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice. Journal of Clinical Investigation, 2010, 120, 2508-2515.	3.9	129
166	Enhanced selection of FoxP3 ⁺ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3306-3311.	3.3	48
167	Genetic Evidence That the Differential Expression of the Ligand-Independent Isoform of CTLA-4 Is the Molecular Basis of the $\langle i \rangle Idd5.1 \langle i \rangle$ Type 1 Diabetes Region in Nonobese Diabetic Mice. Journal of Immunology, 2009, 183, 5146-5157.	0.4	65
168	Cutting Edge: IL-27 Induces the Transcription Factor c-Maf, Cytokine IL-21, and the Costimulatory Receptor ICOS that Coordinately Act Together to Promote Differentiation of IL-10-Producing Tr1 Cells. Journal of Immunology, 2009, 183, 797-801.	0.4	443
169	Constitutive Neuronal Expression of the Immune Regulator, Programmed Death 1 (PD-1), Identified During Experimental Autoimmune Uveitis. Ocular Immunology and Inflammation, 2009, 17, 47-55.	1.0	39
170	Intestinal Tolerance Is Converted to Autoimmune Enteritis upon PD-1 Ligand Blockade. Journal of Immunology, 2009, 182, 2102-2112.	0.4	105
171	CTLA-4 Controls Regulatory T Cell Peripheral Homeostasis and Is Required for Suppression of Pancreatic Islet Autoimmunity. Journal of Immunology, 2009, 182, 274-282.	0.4	144
172	Role of the Immune Modulator Programmed Cell Death-1 during Development and Apoptosis of Mouse Retinal Ganglion Cells., 2009, 50, 4941.		19
173	T.2.5. PD-L1 Regulates the Development, Maintenance and Function of Induced-regulatory T Cells. Clinical Immunology, 2009, 131, S45.	1.4	0
174	B7â€1/2, but not PDâ€L1/2 molecules, are required on ILâ€10â€treated tolerogenic DC and DCâ€derived exosom for <i>in vivo</i> function. European Journal of Immunology, 2009, 39, 3084-3090.	^{e§} 1.6	49
175	The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nature Immunology, 2009, 10, 167-175.	7.0	645
176	Mechanisms of costimulation. Immunological Reviews, 2009, 229, 5-11.	2.8	293
177	PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. Journal of Experimental Medicine, 2009, 206, 3015-3029.	4.2	1,711
178	PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 2008, 26, 677-704.	9.5	4,462
179	Intrafollicular location of marginal zone/CD1dhi B cells is associated with autoimmune pathology in a mouse model of lupus. Laboratory Investigation, 2008, 88, 1008-1020.	1.7	24
180	Programmed Death Ligand 1 Regulates a Critical Checkpoint for Autoimmune Myocarditis and Pneumonitis in MRL Mice. Journal of Immunology, 2008, 181, 2513-2521.	0.4	157

#	Article	IF	CITATIONS
181	ICOS/ICOSL Interaction Is Required for CD4+ Invariant NKT Cell Function and Homeostatic Survival. Journal of Immunology, 2008, 180, 5448-5456.	0.4	79
182	T-Cell Costimulation and Coinhibition in Atherosclerosis. Circulation Research, 2008, 103, 1220-1231.	2.0	123
183	Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15430-15435.	3.3	206
184	Programmed Death 1 Ligand (PD-L) 1 and PD-L2 Limit Autoimmune Kidney Disease: Distinct Roles. Journal of Immunology, 2007, 179, 7466-7477.	0.4	73
185	The Function of Donor versus Recipient Programmed Death-Ligand 1 in Corneal Allograft Survival. Journal of Immunology, 2007, 179, 3672-3679.	0.4	101
186	Endothelial Programmed Death-1 Ligand 1 (PD-L1) Regulates CD8 ⁺ T-Cell–Mediated Injury in the Heart. Circulation, 2007, 116, 2062-2071.	1.6	221
187	Paradoxical Effect of Reduced Costimulation in T Cell-Mediated Colitis. Journal of Immunology, 2007, 178, 5563-5570.	0.4	10
188	PD-1 Regulates Self-Reactive CD8+ T Cell Responses to Antigen in Lymph Nodes and Tissues. Journal of Immunology, 2007, 179, 5064-5070.	0.4	212
189	CTLA-4 Ablation and Interleukin-12–Driven Differentiation Synergistically Augment Cardiac Pathogenicity of Cytotoxic T Lymphocytes. Circulation Research, 2007, 101, 248-257.	2.0	71
190	Induction of autoimmune disease in CTLA-4 ^{â^'/â^'} mice depends on a specific CD28 motif that is required for <i>in vivo</i> costimulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13756-13761.	3.3	85
191	Programmed Death-1 Ligand 1 Interacts Specifically with the B7-1 Costimulatory Molecule to Inhibit T Cell Responses. Immunity, 2007, 27, 111-122.	6.6	1,464
192	TIM-1 and TIM-4 Glycoproteins Bind Phosphatidylserine and Mediate Uptake of Apoptotic Cells. Immunity, 2007, 27, 927-940.	6.6	536
193	Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. Journal of Clinical Investigation, 2007, 117, 2974-2982.	3.9	174
194	PD-1 and its ligands in T-cell immunity. Current Opinion in Immunology, 2007, 19, 309-314.	2.4	388
195	The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nature Immunology, 2007, 8, 239-245.	7.0	1,286
196	Tissue expression of PD-L1 mediates peripheral T cell tolerance. Journal of Experimental Medicine, 2006, 203, 883-895.	4.2	1,042
197	CD48 Controls T-Cell and Antigen-Presenting Cell Functions in Experimental Colitis. Gastroenterology, 2006, 130, 424-434.	0.6	28
198	Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439, 682-687.	13.7	3,471

#	Article	lF	CITATIONS
199	Synergistic Costimulation by Both B7 Molecules Regulates Colitis Pathogenesis. Annals of the New York Academy of Sciences, 2006, 1072, 233-241.	1.8	5
200	PD-L1 and PD-L2 have distinct roles in regulating host immunity to cutaneous leishmaniasis. European Journal of Immunology, 2006, 36, 58-64.	1.6	78
201	T-Cell Costimulation — Biology, Therapeutic Potential, and Challenges. New England Journal of Medicine, 2006, 355, 973-975.	13.9	190
202	Reinvigorating exhausted HIV-specific T cells via PD-1–PD-1 ligand blockade. Journal of Experimental Medicine, 2006, 203, 2223-2227.	4.2	374
203	Impaired Regulatory T-Cell Response and Enhanced Atherosclerosis in the Absence of Inducible Costimulatory Molecule. Circulation, 2006, 114, 2047-2055.	1.6	201
204	Inducible Co-Stimulator Null MRL-FaslprMice: Uncoupling of Autoantibodies and T Cell Responses in Lupus. Journal of the American Society of Nephrology: JASN, 2006, 17, 122-130.	3.0	24
205	Blockade of CTLA-4 on CD4+CD25+ Regulatory T Cells Abrogates Their Function In Vivo. Journal of Immunology, 2006, 177, 4376-4383.	0.4	368
206	Targeting of inducible costimulator (ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease (GVHD) and facilitates engraftment of allogeneic bone marrow (BM). Blood, 2005, 105, 3372-3380.	0.6	113
207	THE B7 FAMILY REVISITED. Annual Review of Immunology, 2005, 23, 515-548.	9.5	2,104
208	Dendritic cells giveth and taketh away. Nature Immunology, 2005, 6, 227-228.	7.0	24
209	The B7/CD28 costimulatory family in autoimmunity. Immunological Reviews, 2005, 204, 128-143.	2.8	129
210	Rap1-GTP Is a Negative Regulator of Th Cell Function and Promotes the Generation of CD4+CD103+ Regulatory T Cells In Vivo. Journal of Immunology, 2005, 175, 3133-3139.	0.4	33
211	Analysis of the Role of Negative T Cell Costimulatory Pathways in CD4 and CD8 T Cell-Mediated Alloimmune Responses In Vivo. Journal of Immunology, 2005, 174, 6648-6656.	0.4	139
212	ICOS Contributes to T Cell Expansion in CTLA-4 Deficient Mice. Journal of Immunology, 2005, 175, 182-188.	0.4	11
213	The ICOS Molecule Plays a Crucial Role in the Development of Mucosal Tolerance. Journal of Immunology, 2005, 175, 7341-7347.	0.4	74
214	Programmed Death-1 (PD-1):PD-Ligand 1 Interactions Inhibit TCR-Mediated Positive Selection of Thymocytes. Journal of Immunology, 2005, 175, 7372-7379.	0.4	122
215	An Important Role of CD80/CD86-CTLA-4 Signaling during Photocarcinogenesis in Mice. Journal of Immunology, 2005, 174, 5298-5305.	0.4	46
216	B7-1/B7-2 Costimulation Regulates Plaque Antigen–Specific T-Cell Responses and Atherogenesis in Low-Density Lipoprotein Receptor–Deficient Mice. Circulation, 2004, 109, 2009-2015.	1.6	133

#	Article	IF	Citations
217	The Cell Surface Receptor SLAM Controls T Cell and Macrophage Functions. Journal of Experimental Medicine, 2004, 199, 1255-1264.	4.2	153
218	B7 Expression on T Cells Down-Regulates Immune Responses through CTLA-4 Ligation via R-T Interactions. Journal of Immunology, 2004, 172, 34-39.	0.4	118
219	Mechanism of Action of Donor-Specific Transfusion in Inducing Tolerance: Role of Donor MHC Molecules, Donor Co-stimulatory Molecules, and Indirect Antigen Presentation. Journal of the American Society of Nephrology: JASN, 2004, 15, 2423-2428.	3.0	40
220	PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10691-10696.	3.3	556
221	Deletion of a conserved Il4 silencer impairs T helper type 1–mediated immunity. Nature Immunology, 2004, 5, 1251-1259.	7.0	103
222	An Autoimmune Disease-Associated CTLA-4 Splice Variant Lacking the B7 Binding Domain Signals Negatively in T Cells. Immunity, 2004, 20, 563-575.	6.6	197
223	Induction of B7-1 in podocytes is associated with nephrotic syndrome. Journal of Clinical Investigation, 2004, 113, 1390-1397.	3.9	495
224	Rap1-GTP Promotes the Generation of Regulatory T Cells in Vivo Blood, 2004, 104, 110-110.	0.6	2
225	Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. European Journal of Immunology, 2003, 33, 2022-2032.	1.6	37
226	Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. European Journal of Immunology, 2003, 33, 2706-2716.	1.6	551
227	Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. European Journal of Immunology, 2003, 33, 3117-3126.	1.6	413
228	The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nature Immunology, 2003, 4, 664-669.	7.0	161
229	The threshold pattern of calcineurin-dependent gene expression is altered by loss of the endogenous inhibitor calcipressin. Nature Immunology, 2003, 4, 874-881.	7.0	120
230	A Role for the B7-1/B7-2:CD28/CTLA-4 Pathway During Negative Selection. Journal of Immunology, 2003, 170, 5421-5428.	0.4	74
231	The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. Journal of Clinical Investigation, 2003, 112, 234-243.	3.9	50
232	The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. Journal of Clinical Investigation, 2003, 112, 234-243.	3.9	114
233	Memory Th2 Effector Cells Can Develop in the Absence of B7-1/B7-2, CD28 Interactions, and Effector Th Cells After Priming with an Intestinal Nematode Parasite. Journal of Immunology, 2002, 168, 6344-6351.	0.4	26
234	Cutting Edge: A Crucial Role for B7-CD28 in Transmitting T Help from APC to CTL. Journal of Immunology, 2002, 169, 4094-4097.	0.4	54

#	Article	IF	CITATIONS
235	CD80+Gr-1+ Myeloid Cells Inhibit Development of Antifungal Th1 Immunity in Mice with Candidiasis. Journal of Immunology, 2002, 169, 3180-3190.	0.4	126
236	Cutting Edge: CTLA-4 (CD152) Differentially Regulates Mitogen-Activated Protein Kinases (Extracellular) Tj ETQq0 Mice. Journal of Immunology, 2002, 169, 3475-3479.	0 0 rgBT / 0.4	Overlock 10 68
237	Role of B7 Costimulatory Molecules in the Adjuvant Activity of the Heat-Labile Enterotoxin of <i>i>Escherichia </i> i>‰ <i>coli </i> . Journal of Immunology, 2002, 169, 1744-1752.	0.4	28
238	Cutting Edge: Inducible Costimulator Protein Regulates Both Th1 and Th2 Responses to Cutaneous Leishmaniasis. Journal of Immunology, 2002, 168, 991-995.	0.4	56
239	The CD154/CD40 Interaction Required for Retrovirus-Induced Murine Immunodeficiency Syndrome Is Not Mediated by Upregulation of the CD80/CD86 Costimulatory Molecules. Journal of Virology, 2002, 76, 13106-13110.	1.5	13
240	CTLA-4 regulates cell cycle progression during a primary immune response. European Journal of Immunology, 2002, 32, 366-373.	1.6	115
241	T helper differentiation in resistant and susceptible B7-deficient mice infected with Leishmania major. European Journal of Immunology, 2002, 32, 1764.	1.6	22
242	Genetic background determines the requirement for B7 costimulation in induction of autoimmunity. European Journal of Immunology, 2002, 32, 2687-2697.	1.6	16
243	Negative co-receptors on lymphocytes. Current Opinion in Immunology, 2002, 14, 391-396.	2.4	152
244	Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nature Medicine, 2002, 8, 1024-1032.	15.2	728
245	The B7–CD28 superfamily. Nature Reviews Immunology, 2002, 2, 116-126.	10.6	1,513
246	CTLA-4 Regulates Induction of Anergy In Vivo. Immunity, 2001, 14, 145-155.	6.6	397
247	PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology, 2001, 2, 261-268.	7.0	2,504
248	ICOS is critical for CD40-mediated antibody class switching. Nature, 2001, 409, 102-105.	13.7	597
249	Rejection of Mouse Cardiac Allografts by Costimulation in <i>trans</i> . Journal of Immunology, 2001, 167, 1174-1178.	0.4	42
250	CD28-independent Costimulation of T Cells in Alloimmune Responses. Journal of Immunology, 2001, 167, 140-146.	0.4	109
251	Role of the B7-CD28/CTLA-4 Pathway in Autoimmune Disease. , 2001, 5, 113-130.		38
252	B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. Journal of Clinical Investigation, 2001, 107, 881-887.	3.9	76

#	Article	IF	CITATIONS
253	Costimulation by B7-1 and B7-2 Is Required for Autoimmune Disease in MRL-FaslprMice. Journal of Immunology, 2000, 164, 6046-6056.	0.4	7 5
254	Stimulation of the B Cell Receptor, CD86 (B7-2), and the \hat{l}^2 2-Adrenergic Receptor Intrinsically Modulates the Level of IgG1 and IgE Produced per B Cell. Journal of Immunology, 2000, 165, 680-690.	0.4	134
255	B7 co-stimulatory requirements differ for induction of immune responses by DNA, protein and recombinant pox virus vaccination. European Journal of Immunology, 2000, 30, 2650-2659.	1.6	28
256	Prevention and treatment of factor VIII inhibitors in murine hemophilia A. Blood, 2000, 95, 1324-1329.	0.6	165
257	Functional Equivalency of B7-1 and B7-2 for Costimulating Plasmid DNA Vaccine-Elicited CTL Responses. Journal of Immunology, 2000, 165, 6791-6795.	0.4	32
258	Either B7 Costimulation or IL-2 Can Elicit Generation of Primary Alloreactive CTL. Journal of Immunology, 2000, 165, 3088-3093.	0.4	19
259	A Critical Role for B7/CD28 Costimulation in Experimental Autoimmune Encephalomyelitis: A Comparative Study Using Costimulatory Molecule-Deficient Mice and Monoclonal Antibody Blockade. Journal of Immunology, 2000, 164, 136-143.	0.4	136
260	B7-1 (CD80) and B7-2 (CD86) Have Complementary Roles in Mediating Allergic Pulmonary Inflammation and Airway Hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 265-271.	1.4	51
261	B7 Costimulation Is Critical for Antibody Class Switching and CD8 ⁺ Cytotoxic T-Lymphocyte Generation in the Host Response to Vesicular Stomatitis Virus. Journal of Virology, 2000, 74, 203-208.	1.5	65
262	Autoantibody Responses and Pathology Regulated by B7-1 and B7-2 Costimulation in MRL/ <i>lpr</i> lprlprs. Journal of Immunology, 2000, 165, 3436-3443.	0.4	45
263	The Role of B7 Costimulation in CD4/CD8 T Cell Homeostasis. Journal of Immunology, 2000, 164, 3543-3553.	0.4	56
264	Association of B7-1 Co-Stimulation with the Development of Graft Arterial Disease. American Journal of Pathology, 2000, 157, 473-484.	1.9	40
265	B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4+CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes. Immunity, 2000, 12, 431-440.	6.6	1,884
266	Mouse Inducible Costimulatory Molecule (ICOS) Expression Is Enhanced by CD28 Costimulation and Regulates Differentiation of CD4+ T Cells. Journal of Immunology, 2000, 165, 5035-5040.	0.4	400
267	ABSENCE OF HOST B7 EXPRESSION IS SUFFICIENT FOR LONG-TERM MURINE VASCULARIZED HEART ALLOGRAFT SURVIVAL. Transplantation, 2000, 69, 904-910.	0.5	48
268	Studies in B7-Deficient Mice Reveal a Critical Role for B7 Costimulation in Both Induction and Effector Phases of Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 1999, 190, 733-740.	4.2	193
269	B7-1 or B7-2 Is Required to Produce the Lymphoproliferative Phenotype in Mice Lacking Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4). Journal of Experimental Medicine, 1999, 189, 435-440.	4.2	137
270	The B7–CD28/CTLA-4 costimulatory pathways in autoimmune disease of the central nervous system. Current Opinion in Immunology, 1999, 11, 677-683.	2.4	73

#	Article	IF	Citations
271	p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 1999, 398, 714-718.	13.7	2,082
272	T-cell stimulation: an abundance of B7s. Nature Medicine, 1999, 5, 1345-1346.	15.2	58
273	Ox40-Ligand Has a Critical Costimulatory Role in Dendritic Cell:T Cell Interactions. Immunity, 1999, 11, 689-698.	6.6	293
274	Heparin is essential for the storage of specific granule proteases in mast cells. Nature, 1999, 400, 769-772.	13.7	394
275	Complete Sequence Determination of the Mouse and Human CTLA4 Gene Loci: Cross-Species DNA Sequence Similarity beyond Exon Borders. Genomics, 1999, 60, 341-355.	1.3	64
276	Cognate Stimulatory B-Cell–T-Cell Interactions Are Critical for T-Cell Help Recruited by Glycoconjugate Vaccines. Infection and Immunity, 1999, 67, 6375-6384.	1.0	90
277	The role of B7 co-stimulation in activation and differentiation of CD4+and CD8+T cells. Immunological Reviews, 1998, 165, 231-247.	2.8	271
278	Distinct roles for B7 costimulation in contact hypersensitivity and humoral immune responses to epicutaneous antigen. European Journal of Immunology, 1998, 28, 4221-4227.	1.6	19
279	B7 (CD80 and CD86). , 1998, , 304-308.		1
280	B7-1 and B7-2 Have Overlapping, Critical Roles in Immunoglobulin Class Switching and Germinal Center Formation. Immunity, 1997, 6, 303-313.	6.6	479
281	The costimulatory genes Cd80 and Cd86 are linked on mouse chromosome 16 and human chromosome 3. Mammalian Genome, 1997, 8, 581-582.	1.0	15
282	Costimulatory signals and viral immunity. Seminars in Virology, 1996, 7, 103-111.	4.1	5
283	Costimulation and autoimmunity. Current Opinion in Immunology, 1996, 8, 822-830.	2.4	96
284	B7-Deficient Mice Reveal an Alternative Functional CTLA-4 Counterreceptor., 1996,, 107-120.		0
285	Reciprocal expression of co-stimulatory molecules, B7-1 and B7-2, on murine T cells following activation. European Journal of Immunology, 1995, 25, 207-211.	1.6	73
286	Lethal \hat{l}^2 -thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature, 1995, 375, 318-322.	13.7	587
287	Transgenic mice for the preparation of hygromycin-resistant primary embryonic fibroblast feeder layers for embryonic stem cell selections. Nucleic Acids Research, 1995, 23, 1273-1275.	6.5	22
288	Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3, 541-547.	6.6	2,628

#	Article	IF	CITATIONS
289	A negative regulatory function of B7 revealed in B7-1 transgenic mice. Immunity, 1994, 1, 415-421.	6.6	79
290	Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science, 1993, 262, 907-909.	6.0	368
291	Reovirus Cytopathology: Effects on Cellular Macromolecular Synthesis and the Cytoskeleton. , 1984, , 431-464.		0
292	Pathogenesis of Reovirus Infection. , 1983, , 229-285.		26
293	The interaction of mammalian reoviruses with the cytoskeleton of monkey kidney CV-1 cells. Virology, 1982, 120, 399-411.	1.1	114
294	Role of the host cell in persistent viral infection: Coevolution of L cells and reovirus during persistent infection. Cell, 1981, 25, 325-332.	13.5	119
295	Genetics of reovirus: Identification of the ds RNA segments encoding the polypeptides of the \hat{l}^4 and \hat	1.1	166
296	A genetic map of reovirus I. Correlation of genome RNAs between serotypes 1, 2, and 3. Virology, 1978, 84, 63-74.	1.1	110
297	A genetic map of reovirus II. Assignment of the double-stranded RNA-negative mutant groups C, D, and E to genome segments. Virology, 1978, 85, 531-544.	1.1	96
298	A genetic map of reovirus II. Assignment of the double-stranded RNA-positive mutant groups A, B, and G to genome segments. Virology, 1978, 85, 545-556.	1.1	82
299	The Role of Costimulation in T Cell Differentiation. , 0, , 079-118.		О