Delong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7053514/publications.pdf

Version: 2024-02-01

37	2,021	22	31
papers	citations	h-index	g-index
39	39	39	1924
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Science Advances, 2016, 2, e1600521.	10.3	229
2	Quantitative Vibrational Imaging by Hyperspectral Stimulated Raman Scattering Microscopy and Multivariate Curve Resolution Analysis. Analytical Chemistry, 2013, 85, 98-106.	6.5	198
3	Coherent Raman Scattering Microscopy in Biology and Medicine. Annual Review of Biomedical Engineering, 2015, 17, 415-445.	12.3	153
4	Highly Sensitive Vibrational Imaging by Femtosecond Pulse Stimulated Raman Loss. Journal of Physical Chemistry Letters, 2011, 2, 1248-1253.	4.6	142
5	Fast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy. Accounts of Chemical Research, 2014, 47, 2282-2290.	15.6	134
6	Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol. Scientific Reports, 2015, 5, 7930.	3.3	122
7	Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Optics Express, 2013, 21, 13864.	3 . 4	98
8	Labelâ€Free Quantitative Imaging of Cholesterol in Intact Tissues by Hyperspectral Stimulated Raman Scattering Microscopy. Angewandte Chemie - International Edition, 2013, 52, 13042-13046.	13.8	91
9	Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Science Advances, 2019, 5, eaav7127.	10.3	89
10	Imaging Lipid Metabolism in Live <i>Caenorhabditis elegans</i> Using Fingerprint Vibrations. Angewandte Chemie - International Edition, 2014, 53, 11787-11792.	13.8	78
11	Mid-Infrared Photothermal Imaging of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution. Analytical Chemistry, 2017, 89, 4863-4867.	6.5	68
12	Heterodyne detected nonlinear optical imaging in a lockâ€in free manner. Journal of Biophotonics, 2012, 5, 801-807.	2.3	63
13	Bond-selective transient phase imaging via sensing of the infrared photothermal effect. Light: Science and Applications, 2019, 8, 116.	16.6	62
14	Fingerprinting a Living Cell by Raman Integrated Mid-Infrared Photothermal Microscopy. Analytical Chemistry, 2019, 91, 10750-10756.	6.5	55
15	Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord. Journal of Biomedical Optics, 2011, 16, 1.	2.6	54
16	Label-Free Imaging of Lipid-Droplet Intracellular Motion in Early Drosophila Embryos Using Femtosecond-Stimulated Raman Loss Microscopy. Biophysical Journal, 2012, 102, 1666-1675.	0.5	52
17	Bond-Selective Imaging of Cells by Mid-Infrared Photothermal Microscopy in High Wavenumber Region. Journal of Physical Chemistry B, 2017, 121, 10249-10255.	2.6	49
18	Label-Free Vibrational Spectroscopic Imaging of Neuronal Membrane Potential. Journal of Physical Chemistry Letters, 2017, 8, 1932-1936.	4.6	48

#	Article	IF	Citations
19	Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Applied Physics Letters, 2015, 106, .	3.3	44
20	Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization. Journal of Physical Chemistry C, 2015, 119, 19397-19403.	3.1	34
21	Vibrational Fingerprint Mapping Reveals Spatial Distribution of Functional Groups of Lignin in Plant Cell Wall. Analytical Chemistry, 2015, 87, 9436-9442.	6.5	32
22	Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator. Applied Physics Letters, 2011, 98, 191106.	3.3	31
23	Label-free real-time imaging of myelination in the <i>Xenopus laevis</i> tadpole by <i>in vivo</i> stimulated Raman scattering microscopy. Journal of Biomedical Optics, 2014, 19, 086005.	2.6	23
24	Timeâ€lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. Journal of Biophotonics, 2013, 6, 815-820.	2.3	18
25	Singleâ€6hot Recognition of 3D Phase Images With Deep Learning. Laser and Photonics Reviews, 2022, 16, .	8.7	7
26	Chemical imaging of fresh vascular smooth muscle cell response by epiâ€detected stimulated Raman scattering. Journal of Biophotonics, 2018, 11, e201700005.	2.3	5
27	Coherent Anti-Stokes Raman Scattering Microspectroscopy: An Emerging Technique for Non-Invasive Optical Assessment of a Local Bio-Nano-Environment. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	2.9	3
28	Enhanced Chemical Sensing with Multiorder Coherent Raman Scattering Spectroscopic Dephasing. Analytical Chemistry, 0, , .	6.5	3
29	Second Harmonic Imaging Enhanced by Deep Learning Decipher. ACS Photonics, 2021, 8, 1562-1568.	6.6	2
30	Background-free stimulated Raman scattering imaging by manipulating photons in the spectral domain. , 2022, , 137-146.		2
31	A femtosecond stimulated Raman loss (fSRL) microscope for highly sensitive bond-selective imaging. Proceedings of SPIE, 2011, , .	0.8	1
32	Spectroscopic SRS imaging with a time-lens source synchronized to a femtosecond pulse shaper. , 2013, , .		1
33	Depth-Resolved Mid-Infrared Photothermal Imaging of Living Cells and Organisms at Sub-Micron Resolution. , 2017, , .		1
34	Label-Free Imaging of Single Neuron Activities by Stimulated Raman Scattering. , 2015, , .		0
35	Beating the diffraction limit in IR microscopy through detecting the thermal effect. , 2017, , .		0
36	Fiber OPO for Multimodal CARS Imaging. , 2010, , .		0

ARTICLE IF CITATIONS

37 Stimulated Raman voltage imaging for quantitative mapping of membrane potential., 2022, , 487-499. 0