
Shinji Saiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052814/publications.pdf Version: 2024-02-01

SHINII SAIKI

#	Article	IF	CITATIONS
1	Plasma taurine is an axonal excitability-translatable biomarker for amyotrophic lateral sclerosis. Scientific Reports, 2022, 12, .	3.3	3
2	A chemical genomics-aggrephagy integrated method studying functional analysis of autophagy inducers. Autophagy, 2021, 17, 1856-1872.	9.1	20
3	Metabolomic analysis data of MPP+-exposed SH-SY5Y cells using CE-TOFMS. Data in Brief, 2021, 34, 106707.	1.0	1
4	Clinical manifestations of Parkinson's disease harboring VPS35 retromer complex component p.D620N with long-term follow-up. Parkinsonism and Related Disorders, 2021, 84, 139-143.	2.2	12
5	Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nature Communications, 2021, 12, 2105.	12.8	105
6	Intrajejunal Infusion of Levodopa/Carbidopa for Advanced Parkinson's Disease: A Systematic Review. Movement Disorders, 2021, 36, 1759-1771.	3.9	10
7	Randomized double-blind placebo-controlled trial of hydrogen inhalation for Parkinson's disease: a pilot study. Neurological Sciences, 2021, 42, 4767-4770.	1.9	19
8	Diffusion MRI Captures White Matter Microstructure Alterations in PRKN Disease. Journal of Parkinson's Disease, 2021, 11, 1221-1235.	2.8	1
9	Non-invasive diagnostic tool for Parkinson's disease by sebum RNA profile with machine learning. Scientific Reports, 2021, 11, 18550.	3.3	14
10	Astrocytes Protect Human Dopaminergic Neurons from α-Synuclein Accumulation and Propagation. Journal of Neuroscience, 2020, 40, 8618-8628.	3.6	57
11	Nonmercaptalbumin as an oxidative stress marker in Parkinson's and PARK2 disease. Annals of Clinical and Translational Neurology, 2020, 7, 307-317.	3.7	22
12	Shared Metabolic Profile of Caffeine in Parkinsonian Disorders. Movement Disorders, 2020, 35, 1438-1447.	3.9	8
13	Neuroprotective effects of memantine via enhancement of autophagy. Biochemical and Biophysical Research Communications, 2019, 518, 161-170.	2.1	36
14	Plasma metabolite biomarkers for multiple system atrophy and progressive supranuclear palsy. PLoS ONE, 2019, 14, e0223113.	2.5	9
15	Metabolomic analysis revealed mitochondrial dysfunction and aberrant choline metabolism in MPP+-exposed SH-SY5Y cells. Biochemical and Biophysical Research Communications, 2019, 519, 540-546.	2.1	13
16	A metabolic profile of polyamines in parkinson disease: A promising biomarker. Annals of Neurology, 2019, 86, 251-263.	5.3	74
17	Metabolomicsâ€based identification of metabolic alterations in PARK2. Annals of Clinical and Translational Neurology, 2019, 6, 525-536.	3.7	44
18	Zonisamide Administration Improves Fatty Acid β-Oxidation in Parkinson's Disease. Cells, 2019, 8, 14.	4.1	5

Shinji Saiki

#	Article	IF	CITATIONS
19	p150glued deficiency impairs effective fusion between autophagosomes and lysosomes due to their redistribution to the cell periphery. Neuroscience Letters, 2019, 690, 181-187.	2.1	15
20	Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology, 2018, 90, e404-e411.	1.1	70
21	Connectome analysis with diffusion MRI in idiopathic Parkinson's disease: Evaluation using multi-shell, multi-tissue, constrained spherical deconvolution. NeuroImage: Clinical, 2018, 17, 518-529.	2.7	51
22	Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells. Methods in Molecular Biology, 2017, 1759, 19-27.	0.9	9
23	Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson's disease. Scientific Reports, 2017, 7, 7328.	3.3	95
24	Ethambutol neutralizes lysosomes and causes lysosomal zinc accumulation. Biochemical and Biophysical Research Communications, 2016, 471, 109-116.	2.1	14
25	Identification of novel biomarkers for Parkinson's disease by metabolomic technologies. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 295-301.	1.9	214
26	p150glued-Associated Disorders Are Caused by Activation of Intrinsic Apoptotic Pathway. PLoS ONE, 2014, 9, e94645.	2.5	14
27	Regulation by mitophagy. International Journal of Biochemistry and Cell Biology, 2014, 53, 147-150.	2.8	40
28	Molecular pathogenesis of Parkinson's disease: update. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 430-436.	1.9	69
29	Lysosomal positioning coordinates cellular nutrient responses. Nature Cell Biology, 2011, 13, 453-460.	10.3	726
30	Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy, 2011, 7, 176-187.	9.1	385
31	PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Letters, 2010, 584, 1073-1079.	2.8	205
32	PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 2010, 189, 211-221.	5.2	1,600
33	Zonisamide reduces cell death in SH-SY5Y cells via an anti-apoptotic effect and by upregulating MnSOD. Neuroscience Letters, 2010, 481, 88-91.	2.1	27
34	Extensive hemispheric lesions with radiological evidence of blood–brain barrier integrity in a patient with neuromyelitis optica. Journal of the Neurological Sciences, 2009, 284, 217-219.	0.6	39
35	Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chemical Biology, 2008, 4, 295-305.	8.0	739
36	Huntington's disease: from pathology and genetics to potential therapies. Biochemical Journal, 2008, 412, 191-209.	3.7	373

#	Article	IF	CITATIONS
37	A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Human Molecular Genetics, 2008, 17, 170-178.	2.9	312