Peter Dallos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052233/publications.pdf

Version: 2024-02-01

38742 43889 8,784 122 50 91 citations h-index g-index papers 143 143 143 2807 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spontaneous Otoacoustic Emissions in < i > Tecta < sup > Y1870C/+ < / sup > < / i > Mice Reflect Changes in Cochlear Amplification and How It Is Controlled by the Tectorial Membrane. ENeuro, 2018, 5, ENEURO.0314-18.2018.	1.9	14
2	Increased Spontaneous Otoacoustic Emissions in Mice with a Detached Tectorial Membrane. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 81-88.	1.8	24
3	Examining the role of the tectorial membrane in otoacoustic emission generation. AIP Conference Proceedings, 2015, , .	0.4	O
4	Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice. PLoS ONE, 2015, 10, e0145428.	2.5	13
5	Functional Regulation of the SLC26-Family Protein Prestin by Calcium/Calmodulin. Journal of Neuroscience, 2014, 34, 1325-1332.	3.6	35
6	Loss of the Tectorial Membrane Protein CEACAM16 Enhances Spontaneous, Stimulus-Frequency, and Transiently Evoked Otoacoustic Emissions. Journal of Neuroscience, 2014, 34, 10325-10338.	3.6	61
7	Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti. Biology Open, 2013, 2, 1192-1202.	1.2	15
8	The V499G/Y501H Mutation Impairs Fast Motor Kinetics of Prestin and Has Significance for Defining Functional Independence of Individual Prestin Subunits. Journal of Biological Chemistry, 2013, 288, 2452-2463.	3.4	33
9	Pixels as ROIs (PAR): A Less-Biased and Statistically Powerful Approach for Gleaning Functional Information from Image Stacks. PLoS ONE, 2013, 8, e69047.	2.5	3
10	Introduction to "Good Vibrations― A Special Issue to celebrate the 50th anniversary of the Nobel Prize to Georg von Békésy. Hearing Research, 2012, 293, 1-2.	2.0	0
11	Using the Cochlear Microphonic as a Tool to Evaluate Cochlear Function in Mouse Models of Hearing. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 113-125.	1.8	54
12	Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with \hat{l}_{\pm} -tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4218-4223.	7.1	123
13	Evidence That Prestin Has at Least Two Voltage-dependent Steps. Journal of Biological Chemistry, 2011, 286, 2297-2307.	3.4	39
14	Dissecting the electromechanical coupling mechanism of the motorprotein prestin. Communicative and Integrative Biology, 2011, 4, 450-453.	1.4	5
15	Dissecting the electromechanical coupling mechanism of the motor-protein prestin. Communicative and Integrative Biology, 2011, 4, 450-3.	1.4	5
16	Interaction between the motor protein prestin and the transporter protein VAPA. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 796-804.	4.1	9
17	The Relationship Among Plasmic Membrane Electron Transport System, Motor Protein Prestin and Deafness. Free Radical Biology and Medicine, 2010, 49, S160.	2.9	О
18	Interaction between CFTR and prestin (SLC26A5). Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1029-1040.	2.6	41

#	Article	IF	Citations
19	A Chimera Analysis of <i>Prestin </i> Knock-Out Mice. Journal of Neuroscience, 2009, 29, 12000-12008.	3.6	15
20	EHD4 and CDH23 Are Interacting Partners in Cochlear Hair Cells. Journal of Biological Chemistry, 2009, 284, 20121-20129.	3.4	18
21	Identifying components of the hair-cell interactome involved in cochlear amplification. BMC Genomics, 2009, 10, 127.	2.8	12
22	Glucose transporter 5 is undetectable in outer hair cells and does not contribute to cochlear amplification. Brain Research, 2008, 1210, 20-28.	2.2	13
23	Cochlear amplification, outer hair cells and prestin. Current Opinion in Neurobiology, 2008, 18, 370-376.	4.2	240
24	Prestin-Based Outer Hair Cell Motility Is Necessary for Mammalian Cochlear Amplification. Neuron, 2008, 58, 333-339.	8.1	333
25	Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12542-12547.	7.1	38
26	Mechanoelectric Transduction of Adult Inner Hair Cells. Journal of Neuroscience, 2007, 27, 1006-1014.	3.6	61
27	Tectorial Membrane Stiffness Gradients. Biophysical Journal, 2007, 93, 2265-2276.	0.5	84
28	Fast cochlear amplification with slow outer hair cells. Hearing Research, 2006, 214, 45-67.	2.0	59
29	Prestin and the cochlear amplifier. Journal of Physiology, 2006, 576, 37-42.	2.9	116
30	Analysis of the Oligomeric Structure of the Motor Protein Prestin. Journal of Biological Chemistry, 2006, 281, 19916-19924.	3.4	94
31	A MICROMECHANICAL MODEL FOR FAST COCHLEAR AMPLIFICATION WITH SLOW OUTER HAIR CELLS. , 2006, ,		0
32	THE COCHLEAR AMPLIFIER: IS IT HAIR BUNDLE MOTION OF OUTER HAIR CELLS?., 2006,,.		1
33	Effects of cyclic nucleotides on the function of prestin. Journal of Physiology, 2005, 563, 483-496.	2.9	71
34	The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting. Journal of Cell Science, 2005, 118, 2987-2996.	2.0	69
35	Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature, 2004, 429, 766-770.	27.8	126
36	Nâ€inked glycosylation sites of the motor protein prestin: effects on membrane targeting and electrophysiological function. Journal of Neurochemistry, 2004, 89, 928-938.	3.9	63

#	Article	IF	Citations
37	Stiffness of the Gerbil Basilar Membrane: Radial and Longitudinal Variations. Journal of Neurophysiology, 2004, 91, 474-488.	1.8	115
38	Organ of Corti Kinematics. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 416-421.	1.8	38
39	Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Human Molecular Genetics, 2003, 12, 1155-1162.	2.9	173
40	Prestin and the Dynamic Stiffness of Cochlear Outer Hair Cells. Journal of Neuroscience, 2003, 23, 9089-9096.	3.6	79
41	Prestin, the Motor Protein of Outer Hair Cells. Audiology and Neuro-Otology, 2002, 7, 9-12.	1.3	66
42	Identification of Differentially Expressed cDNA Clones from Gerbil Cochlear Outer Hair Cells. Audiology and Neuro-Otology, 2002, 7, 277-288.	1.3	8
43	Prestin, a new type of motor protein. Nature Reviews Molecular Cell Biology, 2002, 3, 104-111.	37.0	264
44	Development of acetylcholine receptors in cultured outer hair cells. Hearing Research, 2001, 162, 113-125.	2.0	19
45	Prestin topology: localization of protein epitopes in relation to the plasma membrane. NeuroReport, 2001, 12, 1929-1935.	1.2	93
46	Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. Journal of Physiology, 2001, 531, 661-666.	2.9	92
47	Intracellular calcium and outer hair cell electromotility. Brain Research, 2001, 922, 65-70.	2.2	19
48	Intracellular Anions as the Voltage Sensor of Prestin, the Outer Hair Cell Motor Protein. Science, 2001, 292, 2340-2343.	12.6	415
49	Prestin is the motor protein of cochlear outer hair cells. Nature, 2000, 405, 149-155.	27.8	1,166
50	Properties of Voltage-Dependent Somatic Stiffness of Cochlear Outer Hair Cells. JARO - Journal of the Association for Research in Otolaryngology, 2000, 1, 64-81.	1.8	50
51	Development of the Gerbil Inner Ear Observed in the Hemicochlea. JARO - Journal of the Association for Research in Otolaryngology, 2000, 1, 195-210.	1.8	30
52	Isolation of cochlear inner hair cells. Hearing Research, 2000, 145, 156-160.	2.0	46
53	MODEL OF OUTER HAIR CELL STIFFNESS AND MOTILITY CHANGE. , 2000, , .		2
54	Direct Visualization of Organ of Corti Kinematics in a Hemicochlea. Journal of Neurophysiology, 1999, 82, 2798-2807.	1.8	58

#	Article	IF	Citations
55	Development of Acetylcholine-Induced Responses in Neonatal Gerbil Outer Hair Cells. Journal of Neurophysiology, 1999, 81, 1162-1170.	1.8	36
56	Cyclic GMP and outer hair cell electromotility. Hearing Research, 1999, 137, 29-42.	2.0	29
57	Basilar Membrane Vibration in the Gerbil Hemicochlea. Journal of Neurophysiology, 1998, 79, 2255-2264.	1.8	41
58	Hyposmotic Swelling Induces Magnitude and Gain Change in the Electromotile Performance of Isolated Outer Hair Cells. Acta Oto-Laryngologica, 1997, 117, 222-225.	0.9	11
59	Acetylcholine, Outer Hair Cell Electromotility, and the Cochlear Amplifier. Journal of Neuroscience, 1997, 17, 2212-2226.	3.6	209
60	Expression of potassium channels in gerbil outer hair cells during development does not require neural induction. Developmental Brain Research, 1997, 103, 95-97.	1.7	17
61	Effect of acetylcholine and GABA on the transfer function of electromotility in isolated outer hair cells. Hearing Research, 1996, 95, 87-99.	2.0	56
62	Overview: Cochlear Neurobiology. Springer Handbook of Auditory Research, 1996, , 1-43.	0.7	95
63	High-Frequency Outer Hair Cell Motility: Corrections and Addendum. Science, 1995, 268, 1420-1421.	12.6	5
64	First appearance and development of electromotility in neonatal gerbil outer hair cells. Hearing Research, 1994, 78, 77-90.	2.0	146
65	Acetylcholine Controls the Gain of the Voltage-to-Movement Converter in Isolated Outer Hair Cells. Acta Oto-Laryngologica, 1993, 113, 326-329.	0.9	35
66	The quantitative evaluation of a confocal surgical microscope. , 1992, , .		0
67	Neurobiology of Cochlear Hair Cells. , 1992, , 3-17.		6
68	The role of outer hair cell motility in cochlear tuning. Current Opinion in Neurobiology, 1991, 1, 215-220.	4.2	77
69	Outer hair cell electromotility: The sensitivity and vulnerability of the DC component. Hearing Research, 1991, 52, 288-304.	2.0	92
70	Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature, 1991, 350, 155-157.	27.8	236
71	Neural coding in the chick cochlear nucleus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 166, 721-34.	1.6	163
72	Effects of electrical polarization on inner hair cell receptor potentials. Journal of the Acoustical Society of America, 1990, 87, 1636-1647.	1.1	21

#	Article	IF	Citations
73	The Nonlinearity of Outer Hair Cell Motility: Implications for Cochlear Physiology and Pathology. Lecture Notes in Biomathematics, 1990, , 61-68.	0.3	4
74	Intracellular recordings from supporting cells in the guineaâ€pig cochlea: AC potentials. Journal of the Acoustical Society of America, 1989, 86, 1013-1032.	1.1	23
75	Frequency difference limens in normal and sensorineural hearing impaired chinchillas. Journal of the Acoustical Society of America, 1989, 85, 1302-1313.	1.1	19
76	Nonlinearities in cochlear receptor potentials and their origins. Journal of the Acoustical Society of America, 1989, 86, 1790-1796.	1.1	43
77	Neural response to very low-frequency sound in the avian cochlear nucleus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989, 166, 83-95.	1.6	35
78	Developmental alterations in the frequency map of the mammalian cochlea. Nature, 1989, 341, 147-149.	27.8	92
79	Developmental changes in frequency mapping of the gerbil cochlea: Comparison of two cochlear locations. Hearing Research, 1988, 32, 93-96.	2.0	68
80	Positive endocochlear potential: Mechanism of production by marginal cells of stria vascularis. Hearing Research, 1987, 29, 117-124.	2.0	170
81	Neurobiology of cochlear inner and outer hair cells: intracellular recordings. Hearing Research, 1986, 22, 185-198.	2.0	197
82	Auditory filter shapes in the chinchilla. Journal of the Acoustical Society of America, 1986, 80, 765-775.	1.1	20
83	Harmonic Components in Hair Cell Responses. , 1986, , 73-80.		5
84	Responses of Cochlear Hair Cells. Acta Oto-Laryngologica, 1985, 99, 496-497.	0.9	0
85	Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements. Hearing Research, 1984, 14, 281-291.	2.0	58
86	Some electrical circuit properties of the organ of Corti. I. Analysis without reactive elements. Hearing Research, 1983, 12, 89-119.	2.0	91
87	Intercellular communication in the supporting cells of the organ of Corti. Hearing Research, 1983, 9, 317-326.	2.0	68
88	Two-tone interactions in the cochlear microphonic. Hearing Research, 1982, 8, 29-48.	2.0	37
89	Psychophysical tuning curves and auditory thresholds after hair cell damage in the chinchilla. Journal of the Acoustical Society of America, 1979, 66, 370-378.	1.1	61
90	Impedance matching by the combined effects of the outer and middle ear. Journal of the Acoustical Society of America, 1979, 66, 599-602.	1.1	22

#	Article	IF	Citations
91	Synchronous responses of the primary auditory fibers to the onset of tone burst and their relation to compound action potentials. Brain Research, 1978, 155, 169-175.	2.2	67
92	BIOPHYSICS OF THE COCHLEA., 1978,, 125-162.		6
93	Analog of twoâ€tone suppression in whole nerve responses. Journal of the Acoustical Society of America, 1977, 62, 1048-1051.	1.1	43
94	Re-examination of avian cochlear potentials. Nature, 1976, 262, 599-601.	27.8	4
95	Psychophysical tuning curves of chinchillas. Journal of the Acoustical Society of America, 1976, 60, 1146-1150.	1.1	55
96	Production of cochlear potentials by inner and outer hair cells. Journal of the Acoustical Society of America, 1976, 60, 510-512.	1.1	218
97	Input–output functions of cochlear whole-nerve action potentials: Interpretation in terms of one population of neurons. Journal of the Acoustical Society of America, 1976, 59, 143-147.	1.1	91
98	Compound action potential (AP) tuning curves. Journal of the Acoustical Society of America, 1976, 59, 591-597.	1.1	228
99	Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature, 1975, 253, 44-46.	27.8	230
100	Electrical correlates of mechanical events in the cochlea. International Journal of Audiology, 1975, 14, 408-418.	1.7	16
101	Cochlear mechanics, nonlinearities, and cochlear potentials. Journal of the Acoustical Society of America, 1974, 55, 597-605.	1.1	93
102	The Role of Phase-Locked Auditory-Nerve Discharges in Pitch Perception. Journal of the Acoustical Society of America, 1974, 55, 467-467.	1.1	0
103	Modification of DIF summating potential components by stimulus biasing. Journal of the Acoustical Society of America, 1974, 56, 562-570.	1.1	77
104	Cochlear Microphonic Interference Effects in the Guinea Pig. Journal of the Acoustical Society of America, 1974, 55, 459-459.	1.1	0
105	Bioelectric Correlates of Kanamycin Intoxication. International Journal of Audiology, 1974, 13, 277-289.	1.7	85
106	Cochlear Microphonic Correlates of Cubic Difference Tones. Communication and Cybernetics, 1974, , 312-322.	0.1	5
107	COCHLEAR POTENTIALS AND COCHLEAR MECHANICS. , 1973, , 335-376.		55
108	Fractional Distortion Pairs in the Cochlea. Journal of the Acoustical Society of America, 1972, 52, 530-535.	1.1	0

#	Article	IF	CITATIONS
109	Study of the Acoustic Reflex in Human Beings. I. Dynamic Characteristics. Journal of the Acoustical Society of America, 1972, 52, 1168-1180.	1.1	56
110	On the Derivative Relationship between Stapes Movement and Cochlear Microphonic. Journal of the Acoustical Society of America, 1972, 52, 1263-1265.	1.1	19
111	Influence of Direct urrent Polarization of the Cochlear Partition on the Summating Potentials. Journal of the Acoustical Society of America, 1972, 52, 542-552.	1.1	18
112	Latency of Wholeâ€Nerve Action Potentials: Influence of Hair ell Normalcy. Journal of the Acoustical Society of America, 1972, 52, 1678-1686.	1.1	45
113	The Effects of dc Current Polarization on Cochlear Harmonics. Journal of the Acoustical Society of America, 1972, 52, 1725-1728.	1.1	4
114	Comments on "Correspondence between Cochlear Microphonic Sensitivity and Behavioral Threshold in the Cat―[G. R. Price, J. Acoust. Soc. Amer. 49, 1899–1901 (1971)]. Journal of the Acoustical Society of America, 1971, 50, 1554-1554.	1.1	6
115	Spatial Patterns of Cochlear Difference Tones. Journal of the Acoustical Society of America, 1971, 49, 1818-1830.	1.1	18
116	Travel Time in the Cochlea and Its Determination from Cochlearâ€Microphonic Data. Journal of the Acoustical Society of America, 1971, 49, 1140-1143.	1,1	44
117	On the Limitations of Cochlearâ€Microphonic Measurements. Journal of the Acoustical Society of America, 1971, 49, 1144-1154.	1.1	42
118	Low-Frequency Auditory Characteristics: Species Dependence. Journal of the Acoustical Society of America, 1970, 48, 489-499.	1.1	198
119	Distribution Pattern of Cochlear Combination Tones. Journal of the Acoustical Society of America, 1969, 45, 58-71.	1.1	30
120	Distribution Pattern of Cochlear Harmonics. Journal of the Acoustical Society of America, 1969, 45, 37-46.	1.1	33
121	Combination Tone 2flâ^'fh in Microphonic Potentials. Journal of the Acoustical Society of America, 1969, 46, 1437-1444.	1.1	47
122	On the Negative Potential within the Organ of Corti. Journal of the Acoustical Society of America, 1968, 44, 818-819.	1.1	15