List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052227/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bioconversion of lignin-derived aromatics into the building block pyridine 2,4-dicarboxylic acid by engineering recombinant Pseudomonas putida strains. Bioresource Technology, 2022, 346, 126638.                       | 9.6 | 24        |
| 2  | Genetic characterization of the cyclohexane carboxylate degradation pathway in the denitrifying<br>bacterium <i>Aromatoleum</i> sp. <scp>CIB</scp> . Environmental Microbiology, 2022, 24, 4987-5004.                    | 3.8 | 3         |
| 3  | Elevated câ€diâ€GMP levels promote biofilm formation and biodesulfurization capacity of<br><i>Rhodococcus erythropolis</i> . Microbial Biotechnology, 2021, 14, 923-937.                                                 | 4.2 | 8         |
| 4  | Motility, Adhesion and c-di-GMP Influence the Endophytic Colonization of Rice by Azoarcus sp. CIB.<br>Microorganisms, 2021, 9, 554.                                                                                      | 3.6 | 10        |
| 5  | Enhancing the Rice Seedlings Growth Promotion Abilities of Azoarcus sp. CIB by Heterologous<br>Expression of ACC Deaminase to Improve Performance of Plants Exposed to Cadmium Stress.<br>Microorganisms, 2020, 8, 1453. | 3.6 | 14        |
| 6  | Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling. Scientific Reports, 2020, 10, 8651.                                                      | 3.3 | 1         |
| 7  | Expanding the current knowledge and biotechnological applications of the oxygenâ€independent<br><scp><i>ortho</i></scp> â€phthalate degradation pathway. Environmental Microbiology, 2020, 22,<br>3478-3493.             | 3.8 | 6         |
| 8  | ArxA From Azoarcus sp. CIB, an Anaerobic Arsenite Oxidase From an Obligate Heterotrophic and<br>Mesophilic Bacterium. Frontiers in Microbiology, 2019, 10, 1699.                                                         | 3.5 | 14        |
| 9  | Further Insights into the Architecture of the PN Promoter That Controls the Expression of the bzd<br>Genes in Azoarcus. Genes, 2019, 10, 489.                                                                            | 2.4 | 2         |
| 10 | A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in<br><i>Azoarcus</i> sp. ClB. MBio, 2019, 10, .                                                                                       | 4.1 | 4         |
| 11 | Testosterone Degradative Pathway of Novosphingobium tardaugens. Genes, 2019, 10, 871.                                                                                                                                    | 2.4 | 30        |
| 12 | Transcriptional Regulation of the Peripheral Pathway for the Anaerobic Catabolism of Toluene and m-Xylene in Azoarcus sp. CIB. Frontiers in Microbiology, 2018, 9, 506.                                                  | 3.5 | 23        |
| 13 | Four Molybdenum-Dependent Steroid C-25 Hydroxylases: Heterologous Overproduction, Role in<br>Steroid Degradation, and Application for 25-Hydroxyvitamin D <sub>3</sub> Synthesis. MBio, 2018, 9, .                       | 4.1 | 16        |
| 14 | Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. Journal of<br>Biotechnology, 2017, 262, 47-55.                                                                                       | 3.8 | 58        |
| 15 | Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds. Microbial<br>Biotechnology, 2017, 10, 1418-1425.                                                                                       | 4.2 | 6         |
| 16 | Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory.<br>Scientific Reports, 2017, 7, 16046.                                                                              | 3.3 | 81        |
| 17 | The ICE <sub><i>XTD</i></sub> of <i>Azoarcus</i> sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environmental Microbiology, 2016, 18, 5018-5031.                       | 3.8 | 20        |
| 18 | Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microbial Cell Factories, 2016, 15, 109.                                                                                                                     | 4.0 | 83        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Refactoring the λ phage lytic/lysogenic decision with a synthetic regulator. MicrobiologyOpen, 2016, 5, 575-581.                                                                                                                                                | 3.0 | 12        |
| 20 | Degradation of cyclic diguanosine monophosphate by a hybrid two-component protein protects<br><i>Azoarcus</i> sp. strain CIB from toluene toxicity. Proceedings of the National Academy of Sciences<br>of the United States of America, 2016, 113, 13174-13179. | 7.1 | 13        |
| 21 | Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metabolic Engineering, 2016, 35, 46-54.                                                                                                      | 7.0 | 85        |
| 22 | New challenges for syngas fermentation: towards production of biopolymers. Journal of Chemical<br>Technology and Biotechnology, 2015, 90, 1735-1751.                                                                                                            | 3.2 | 53        |
| 23 | Genome Sequence of Pseudomonas azelaica Strain Aramco J. Genome Announcements, 2015, 3, .                                                                                                                                                                       | 0.8 | 8         |
| 24 | Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Systematic and Applied Microbiology, 2015, 38, 462-471.                                                           | 2.8 | 73        |
| 25 | Unraveling the Specific Regulation of the Central Pathway for Anaerobic Degradation of<br>3-Methylbenzoate. Journal of Biological Chemistry, 2015, 290, 12165-12183.                                                                                            | 3.4 | 13        |
| 26 | Genome Sequence of <i>Pseudomonas azelaica</i> HBP1, Which Catabolizes 2-Hydroxybiphenyl Fungicide. Genome Announcements, 2014, 2, .                                                                                                                            | 0.8 | 11        |
| 27 | Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle.<br>PLoS ONE, 2014, 9, e110771.                                                                                                                                  | 2.5 | 49        |
| 28 | A second chromosomal copy of the <scp><i>catA</i></scp> gene endows<br><scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>mt</scp> â€2 with an enzymatic safety valve for<br>excess of catechol. Environmental Microbiology, 2014, 16, 1767-1778.             | 3.8 | 38        |
| 29 | Insights on the regulation of the phenylacetate degradation pathway from<br><scp><i>E</i></scp> <i>scherichia coli</i> . Environmental Microbiology Reports, 2014, 6, 239-250.                                                                                  | 2.4 | 27        |
| 30 | AccR Is a Master Regulator Involved in Carbon Catabolite Repression of the Anaerobic Catabolism of Aromatic Compounds in Azoarcus sp. CIB. Journal of Biological Chemistry, 2014, 289, 1892-1904.                                                               | 3.4 | 19        |
| 31 | Plasmids as Tools for Containment. Microbiology Spectrum, 2014, 2, .                                                                                                                                                                                            | 3.0 | 10        |
| 32 | Characterization of the <i>mbd</i> cluster encoding the anaerobic 3â€methylbenzoylâ€CoA central pathway. Environmental Microbiology, 2013, 15, 148-166.                                                                                                         | 3.8 | 37        |
| 33 | Aerobic degradation of aromatic compounds. Current Opinion in Biotechnology, 2013, 24, 431-442.                                                                                                                                                                 | 6.6 | 148       |
| 34 | Identification of a Missing Link in the Evolution of an Enzyme into a Transcriptional Regulator. PLoS ONE, 2013, 8, e57518.                                                                                                                                     | 2.5 | 13        |
| 35 | Bacterial Degradation of Benzoate. Journal of Biological Chemistry, 2012, 287, 10494-10508.                                                                                                                                                                     | 3.4 | 91        |
| 36 | A finely tuned regulatory circuit of the nicotinic acid degradation pathway in <i>Pseudomonas putida</i> . Environmental Microbiology, 2011, 13, 1718-1732.                                                                                                     | 3.8 | 22        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Unravelling the gallic acid degradation pathway in bacteria: the <i>gal</i> cluster from <i>Pseudomonas putida</i> . Molecular Microbiology, 2011, 79, 359-374.                                                                                                 | 2.5 | 72        |
| 38 | A preliminary crystallographic study of recombinant NicX, an Fe <sup>2+</sup> -dependent<br>2,5-dihydroxypyridine dioxygenase from <i>Pseudomonas putida</i> KT2440. Acta Crystallographica<br>Section F: Structural Biology Communications, 2010, 66, 549-553. | 0.7 | 4         |
| 39 | Identification of the <i>Geobacter metallireducens</i> BamVW Two-Component System, Involved in<br>Transcriptional Regulation of Aromatic Degradation. Applied and Environmental Microbiology, 2010,<br>76, 383-385.                                             | 3.1 | 23        |
| 40 | Biochemical Characterization of the Transcriptional Regulator BzdR from Azoarcus sp. CIB. Journal of Biological Chemistry, 2010, 285, 35694-35705.                                                                                                              | 3.4 | 33        |
| 41 | 3-Hydroxyphenylpropionate and Phenylpropionate Are Synergistic Activators of the MhpR<br>Transcriptional Regulator from Escherichia coli. Journal of Biological Chemistry, 2009, 284,<br>21218-21228.                                                           | 3.4 | 28        |
| 42 | Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain. Applied<br>and Environmental Microbiology, 2009, 75, 875-877.                                                                                                          | 3.1 | 34        |
| 43 | Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View. Microbiology and<br>Molecular Biology Reviews, 2009, 73, 71-133.                                                                                                                        | 6.6 | 378       |
| 44 | Identification and analysis of a glutaryl-CoA dehydrogenase-encoding gene and its cognate<br>transcriptional regulator from Azoarcus sp. CIB. Environmental Microbiology, 2008, 10, 474-482.                                                                    | 3.8 | 20        |
| 45 | Deciphering the genetic determinants for aerobic nicotinic acid degradation: The <i>nic</i> cluster<br>from <i>Pseudomonas putida</i> KT2440. Proceedings of the National Academy of Sciences of the<br>United States of America, 2008, 105, 11329-11334.       | 7.1 | 136       |
| 46 | New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. Microbiology (United Kingdom), 2008, 154, 306-316.                                                                                  | 1.8 | 15        |
| 47 | Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology<br>(United Kingdom), 2007, 153, 357-365.                                                                                                                   | 1.8 | 55        |
| 48 | Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environmental Microbiology, 2006, 8, 165-177.                                                                          | 3.8 | 123       |
| 49 | Coregulation by Phenylacetyl-Coenzyme A-Responsive PaaX Integrates Control of the Upper and Lower<br>Pathways for Catabolism of Styrene by Pseudomonas sp. Strain Y2. Journal of Bacteriology, 2006, 188,<br>4812-4821.                                         | 2.2 | 29        |
| 50 | Genetic Characterization of the Phenylacetyl-Coenzyme A Oxygenase from the Aerobic Phenylacetic<br>Acid Degradation Pathway of Escherichia coli. Applied and Environmental Microbiology, 2006, 72,<br>7422-7426.                                                | 3.1 | 36        |
| 51 | Oxygen-Dependent Regulation of the Central Pathway for the Anaerobic Catabolism of Aromatic<br>Compounds in <i>Azoarcus</i> sp. Strain CIB. Journal of Bacteriology, 2006, 188, 2343-2354.                                                                      | 2.2 | 19        |
| 52 | Ironâ€reducing bacteria unravel novel strategies for the anaerobic catabolism of aromatic compounds.<br>Molecular Microbiology, 2005, 58, 1210-1215.                                                                                                            | 2.5 | 18        |
| 53 | Molecular Characterization of the Gallate Dioxygenase from Pseudomonas putida KT2440. Journal of Biological Chemistry, 2005, 280, 35382-35390.                                                                                                                  | 3.4 | 53        |
| 54 | BzdR, a Repressor That Controls the Anaerobic Catabolism of Benzoate in Azoarcus sp. CIB, Is the First<br>Member of a New Subfamily of Transcriptional Regulators. Journal of Biological Chemistry, 2005, 280,<br>10683-10694.                                  | 3.4 | 77        |

| #  | Article                                                                                                                                                                                                                    | IF                         | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|
| 55 | The <i>bzd</i> Gene Cluster, Coding for Anaerobic Benzoate Catabolism, in <i>Azoarcus</i> sp. Strain<br>CIB. Journal of Bacteriology, 2004, 186, 5762-5774.                                                                | 2.2                        | 111           |
| 56 | Genetic clues on the evolution of anaerobic catabolism of aromatic compounds. Microbiology (United Kingdom), 2004, 150, 2018-2021.                                                                                         | 1.8                        | 15            |
| 57 | Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources inEscherichia coli. FEMS Microbiology Reviews, 2004, 28, 503-518.                         | 8.6                        | 21            |
| 58 | Genomic Insights in the Metabolism of Aromatic Compounds in Pseudomonas. , 2004, , 425-462.                                                                                                                                |                            | 41            |
| 59 | The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of<br>I-Phenylalanine, I-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida. Journal of<br>Bacteriology, 2004, 186, 5062-5077.  | 2.2                        | 225           |
| 60 | Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International<br>Microbiology, 2004, 7, 173-80.                                                                                         | 2.4                        | 203           |
| 61 | Design of catabolic cassettes for styrene biodegradation. Antonie Van Leeuwenhoek, 2003, 84, 17-24.                                                                                                                        | 1.7                        | 15            |
| 62 | Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene, 2003, 319, 71-83.                                                                                                      | 2.2                        | 28            |
| 63 | Regulation of the mhp Cluster Responsible for 3-(3-Hydroxyphenyl)propionic Acid Degradation in<br>Escherichia coli. Journal of Biological Chemistry, 2003, 278, 27575-27585.                                               | 3.4                        | 42            |
| 64 | A dual lethal system to enhance containment of recombinant micro-organisms. Microbiology (United) Tj ETQq0                                                                                                                 | 0 0 rgBT /0<br>1 <b>.8</b> | Overlock 10 T |
| 65 | Genomic analysis of the aromatic catabolic pathways from <i>Pseudomonas putida</i> KT2440.<br>Environmental Microbiology, 2002, 4, 824-841.                                                                                | 3.8                        | 448           |
| 66 | Biodegradation of Aromatic Compounds by Escherichia coli. Microbiology and Molecular Biology<br>Reviews, 2001, 65, 523-569.                                                                                                | 6.6                        | 314           |
| 67 | A gene containment strategy based on a restriction-modification system. Environmental Microbiology, 2000, 2, 555-563.                                                                                                      | 3.8                        | 26            |
| 68 | Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant<br>biocatalysts. Environmental Microbiology, 2000, 2, 687-694.                                                          | 3.8                        | 82            |
| 69 | Bacterial promoters triggering biodegradation of aromatic pollutants. Current Opinion in Biotechnology, 2000, 11, 467-475.                                                                                                 | 6.6                        | 151           |
| 70 | The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria:<br>triggering of the major pneumococcal autolysin in Escherichia coli. Molecular Microbiology, 1996, 19,<br>667-681. | 2.5                        | 48            |
| 71 | A stringently controlled expression system for analysing lateral gene transfer between bacteria.<br>Molecular Microbiology, 1996, 21, 293-300.                                                                             | 2.5                        | 23            |
| 72 | Restricting the Dispersal of Recombinant DNA: Design of a Contained Biological Catalyst. Nature<br>Biotechnology, 1996, 14, 189-191.                                                                                       | 17.5                       | 11            |

| #  | Article                                                                                                                                                                                   | IF                  | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| 73 | Suicide Microbes on the Loose. Nature Biotechnology, 1995, 13, 35-37.                                                                                                                     | 17.5                | 22             |
| 74 | The evolutionary relationship of biphenyl dioxygenase from Gram-positive Rhodococcus globerulus<br>P6 to multicomponent dioxygenases from Gram-negative bacteria. Gene, 1995, 156, 11-18. | 2.2                 | 93             |
| 75 | The Behavior of Bacteria Designed for Biodegradation. Nature Biotechnology, 1994, 12, 1349-1356.                                                                                          | 17.5                | 76             |
| 76 | Universal barrier to lateral spread of specific genes among microorganisms. Molecular Microbiology, 1994, 13, 855-861.                                                                    | 2.5                 | 75             |
| 77 | The structure of new <i>cis</i> and <i>trans</i><br>3′â€phenylâ€3′,3a′,4′,5′,6′,7a′â€hexahydroâ€2,1â€benzisoxazoleâ€7a′â€spiroâ€2â€(3â<br>Chemistry, 1993, 30, 97-104.                    | €p <b>h.e</b> nylaz | iridine). Jour |
| 78 | Characterization of the transcription unit encoding the major pneumococcal autolysin. Gene, 1990, 90, 157-162.                                                                            | 2.2                 | 20             |
| 79 | Construction of a broad-host-range pneumococcal promoter-probe plasmid. Gene, 1990, 90, 163-167.                                                                                          | 2.2                 | 13             |
| 80 | Plasmids as Tools for Containment. , 0, , 589-601.                                                                                                                                        |                     | 2              |
| 81 | Plasmids as Tools for Containment. , 0, , 615-631.                                                                                                                                        |                     | 0              |