Donald R Zak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7051794/publications.pdf

Version: 2024-02-01

204 papers 24,924 citations

7551 77 h-index 7931 149 g-index

206 all docs

206 docs citations

206 times ranked 16351 citing authors

#	Article	IF	Citations
1	Decay by ectomycorrhizal fungi couples soil organic matter to nitrogen availability. Ecology Letters, 2022, 25, 391-404.	3.0	32
2	Plant effects on and response to soil microbes in native and nonâ€native <i>Phragmites australis</i> Ecological Applications, 2022, 32, e2565.	1.8	9
3	Coupled Shifts in Ectomycorrhizal Communities and Plant Uptake of Organic Nitrogen Along a Soil Gradient: An Isotopic Perspective. Ecosystems, 2021, 24, 1976-1990.	1.6	16
4	Isotopic composition of mercury deposited via snow into mid-latitude ecosystems. Science of the Total Environment, 2021, 784, 147252.	3.9	5
5	Ectomycorrhizal fungal decay traits along a soil nitrogen gradient. New Phytologist, 2021, 232, 2152-2164.	3.5	14
6	Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree. Nature Communications, 2021, 12, 5403.	5.8	20
7	Ectomycorrhizal root tips harbor distinctive fungal associates along a soil nitrogen gradient. Fungal Ecology, 2021, 54, 101111.	0.7	5
8	Differences in rhizosphere microbial communities between native and nonâ€native Phragmites australis may depend on stand density. Ecology and Evolution, 2020, 10, 11739-11751.	0.8	15
9	Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots. Global Change Biology, 2019, 25, 4369-4382.	4.2	40
10	Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern Hemisphere. Ecology, 2019, 100, e02804.	1.5	45
11	Environmental filtering structures fungal endophyte communities in tree bark. Molecular Ecology, 2019, 28, 5188-5198.	2.0	21
12	Scale dependency of dispersal limitation, environmental filtering and biotic interactions determine the diversity and composition of oribatid mite communities. Pedobiologia, 2019, 74, 43-53.	0.5	10
13	Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 2019, 10, 454.	5.8	68
14	Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytologist, 2019, 223, 33-39.	3.5	147
15	Anthropogenic N Deposition Alters the Composition of Expressed Class II Fungal Peroxidases. Applied and Environmental Microbiology, 2018, 84, .	1.4	19
16	Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate. Ecology, 2018, 99, 411-420.	1.5	33
17	Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi. Ecological Monographs, 2018, 88, 225-244.	2.4	58
18	Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytologist, 2018, 217, 68-73.	3.5	117

#	Article	IF	Citations
19	Root endophytes and invasiveness: no difference between native and nonâ€native <i>Phragmites</i> in the Great Lakes Region. Ecosphere, 2018, 9, e02526.	1.0	24
20	Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppe. Ecology Letters, 2017, 20, 202-211.	3.0	21
21	Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils. Microbial Ecology, 2017, 73, 630-644.	1.4	36
22	Anthropogenic N deposition increases soil organic matterÂaccumulation without altering its biochemical composition. Global Change Biology, 2017, 23, 933-944.	4.2	111
23	Activity of an introduced earthworm (Lumbricus terrestris) increases under future rates of atmospheric nitrogen deposition in northern temperate forests. Applied Soil Ecology, 2017, 120, 206-210.	2.1	1
24	Anthropogenic N Deposition Slows Decay by Favoring Bacterial Metabolism: Insights from Metagenomic Analyses. Frontiers in Microbiology, 2016, 7, 259.	1.5	64
25	Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition. PLoS ONE, 2016, 11, e0164531.	1.1	13
26	Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiology Ecology, 2016, 92, fiw149.	1.3	69
27	Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage. Ecological Applications, 2016, 26, 913-925.	1.8	20
28	Assembly of Active Bacterial and Fungal Communities Along a Natural Environmental Gradient. Microbial Ecology, 2016, 71, 57-67.	1.4	37
29	Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities. Molecular Ecology, 2015, 24, 3170-3180.	2.0	41
30	Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate. Molecular Ecology, 2015, 24, 5045-5058.	2.0	44
31	Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Frontiers in Microbiology, 2015, 6, 337.	1.5	79
32	Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a longâ€ŧerm chronosequence. Environmental Microbiology, 2015, 17, 3208-3218.	1.8	85
33	Soil microbial communities are shaped by plantâ€driven changes in resource availability during secondary succession. Ecology, 2015, 96, 3374-3385.	1.5	162
34	Differential responses of total and active soil microbial communities to long-term experimental N deposition. Soil Biology and Biochemistry, 2015, 90, 275-282.	4.2	130
35	Elk, sagebrush, and saprotrophs: indirect topâ€down control on microbial community composition and function. Ecology, 2015, 96, 2383-2393.	1.5	13
36	Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils. PLoS ONE, 2014, 9, e95557.	1.1	91

#	Article	IF	Citations
37	Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Global Change Biology, 2014, 20, 2492-2504.	4.2	60
38	Atmospheric N Deposition Increases Bacterial Laccase-Like Multicopper Oxidases: Implications for Organic Matter Decay. Applied and Environmental Microbiology, 2014, 80, 4460-4468.	1.4	46
39	Trophic stability of soil oribatid mites in the face of environmental change. Soil Biology and Biochemistry, 2014, 68, 71-77.	4.2	29
40	Dispersal limitation structures fungal community assembly in a longâ€term glacial chronosequence. Environmental Microbiology, 2014, 16, 1538-1548.	1.8	62
41	Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3. Soil Biology and Biochemistry, 2014, 76, 227-234.	4.2	29
42	Chronic nitrogen deposition and the composition of active arbuscular mycorrhizal fungi. Applied Soil Ecology, 2013, 72, 62-68.	2.1	15
43	Mercury isotopes in a forested ecosystem: Implications for airâ€surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 2013, 27, 222-238.	1.9	364
44	Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biology and Biochemistry, 2013, 66, 130-138.	4.2	38
45	Chronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystem. Ecological Applications, 2013, 23, 1311-1321.	1.8	33
46	Microbial Mechanisms Mediating Increased Soil C Storage under Elevated Atmospheric N Deposition. Applied and Environmental Microbiology, 2013, 79, 1191-1199.	1.4	75
47	Long-Term Experimental Nitrogen Deposition Alters the Composition of the Active Fungal Community in the Forest Floor. Soil Science Society of America Journal, 2013, 77, 1648-1658.	1.2	45
48	Air pollution and the changing biogeochemistry of northern forests. Frontiers in Ecology and the Environment, 2012, 10, 181-185.	1.9	19
49	Sinks for nitrogen inputs in terrestrial ecosystems: a metaâ€analysis of ¹⁵ N tracer field studies. Ecology, 2012, 93, 1816-1829.	1.5	192
50	Atmospheric <scp>CO₂</scp> and <scp>O₃</scp> alter competition for soil nitrogen in developing forests. Global Change Biology, 2012, 18, 1480-1488.	4.2	18
51	Dispersal limitation and the assembly of soil <i>Actinobacteria</i> communities in a longâ€term chronosequence. Ecology and Evolution, 2012, 2, 538-549.	0.8	39
52	Anthropogenic N Deposition Increases Soil C Storage by Decreasing the Extent of Litter Decay: Analysis of Field Observations with an Ecosystem Model. Ecosystems, 2012, 15, 450-461.	1.6	59
53	Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. Journal of Applied Ecology, 2012, 49, 155-163.	1.9	23
54	Chronic <scp><scp>N</scp></scp> deposition alters root respirationâ€tissue <scp><scp>N</scp> relationship in northern hardwood forests. Global Change Biology, 2012, 18, 258-266.</scp>	4.2	101

#	Article	IF	Citations
55	Chronic N deposition does not apparently alter the biochemical composition of forest floor and soil organic matter. Soil Biology and Biochemistry, 2012, 54, 7-13.	4.2	28
56	Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology, 2012, 14, 1145-1158.	1.8	79
57	Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecology, 2011, 4, 386-395.	0.7	99
58	Ecological Lessons from Free-Air CO ₂ Enrichment (FACE) Experiments. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 181-203.	3.8	558
59	Simulated Atmospheric N Deposition Alters Fungal Community Composition and Suppresses Ligninolytic Gene Expression in a Northern Hardwood Forest. PLoS ONE, 2011, 6, e20421.	1.1	163
60	Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecology Letters, 2011, 14, 1220-1226.	3.0	96
61	Responses of soil cellulolytic fungal communities to elevated atmospheric CO ₂ are complex and variable across five ecosystems. Environmental Microbiology, 2011, 13, 2778-2793.	1.8	56
62	Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Global Change Biology, 2011, 17, 2184-2195.	4.2	45
63	Changes in forest soil organic matter pools after a decade of elevated CO2 and O3. Soil Biology and Biochemistry, 2011, 43, 1518-1527.	4.2	57
64	Plant effects on soil N mineralization are mediated by the composition of multiple soil organic fractions. Ecological Research, 2011, 26, 201-208.	0.7	26
65	Forest gene diversity is correlated with the composition and function of soil microbial communities. Population Ecology, 2011, 53, 35-46.	0.7	55
66	Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia, 2010, 164, 785-795.	0.9	84
67	Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Molecular Ecology, 2010, 19, 1469-1482.	2.0	43
68	Simulated Atmospheric Nitrogen Deposition Alters Actinobacterial Community Composition in Forest Soils. Soil Science Society of America Journal, 2010, 74, 1157-1166.	1.2	81
69	Nitrogen turnover in the leaf litter and fine roots of sugar maple. Ecology, 2010, 91, 3456-3462.	1.5	14
70	Fungi Unearthed: Transcripts Encoding Lignocellulolytic and Chitinolytic Enzymes in Forest Soil. PLoS ONE, 2010, 5, e10971.	1.1	86
71	Detection of expressed fungal Type I polyketide synthase genes in a forest soil. Soil Biology and Biochemistry, 2009, 41, 1344-1347.	4.2	8
72	Microbial assimilation of new photosynthate is altered by plant species richness and nitrogen deposition. Biogeochemistry, 2009, 94, 233-242.	1.7	6

#	Article	IF	Citations
73	Laccase Gene Composition and Relative Abundance in Oak Forest Soil is not Affected by Short-Term Nitrogen Fertilization. Microbial Ecology, 2009, 57, 50-57.	1.4	31
74	Are Basidiomycete Laccase Gene Abundance and Composition Related to Reduced Lignolytic Activity Under Elevated Atmospheric NO3 â° Deposition in a Northern Hardwood Forest?. Microbial Ecology, 2009, 57, 728-739.	1.4	43
75	Speciesâ€specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecology Letters, 2009, 12, 1219-1228.	3.0	48
76	Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions. Biogeochemistry, 2008, 91, 37-49.	1.7	116
77	Chronic Atmospheric NO 3 â^' Deposition Does Not Induce NO 3 â^' Use by Acer saccharum Marsh Ecosystems, 2008, 11, 469-477.	1.6	12
78	Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia, 2008, 158, 85-93.	0.9	124
79	Soil respiration, root biomass, and root turnover following longâ€ŧerm exposure of northern forests to elevated atmospheric CO ₂ and tropospheric O ₃ . New Phytologist, 2008, 180, 153-161.	3.5	134
80	Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11, 1252-1264.	3.0	1,684
81	Elevated atmospheric CO ₂ affects soil microbial diversity associated with trembling aspen. Environmental Microbiology, 2008, 10, 926-941.	1.8	235
82	Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology, 2008, 14, 142-153.	4.2	381
83	Isolation of Fungal Cellobiohydrolase I Genes from Sporocarps and Forest Soils by PCR. Applied and Environmental Microbiology, 2008, 74, 3481-3489.	1.4	96
84	SIMULATED ATMOSPHERIC NO ₃ ^{â^'} DEPOSITION INCREASES SOIL ORGANIC MATTER BY SLOWING DECOMPOSITION. Ecological Applications, 2008, 18, 2016-2027.	1.8	174
85	Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14014-14019.	3.3	353
86	ATMOSPHERIC CO ₂ AND O ₃ ALTER THE FLOW OF ¹⁵ N IN DEVELOPING FOREST ECOSYSTEMS. Ecology, 2007, 88, 2630-2639.	1.5	41
87	Interpreting Ecological Diversity Indices Applied to Terminal Restriction Fragment Length Polymorphism Data: Insights from Simulated Microbial Communities. Applied and Environmental Microbiology, 2007, 73, 5276-5283.	1.4	174
88	The Contribution of Root – Rhizosphere Interactions to Biogeochemical Cycles in a Changing World. , 2007, , 155-178.		11
89	Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environmental Microbiology, 2007, 9, 1306-1316.	1.8	137
90	Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition. Global Change Biology, 2007, 13, 132-146.	4.2	23

#	Article	IF	Citations
91	Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13, 980-989.	4.2	238
92	Belowground competition and the response of developing forest communities to atmospheric CO2and O3. Global Change Biology, 2007, 13, 2230-2238.	4.2	23
93	Quantifying direct and indirect effects of fungicide on an old-field plant community: an experimental null-community approach. Plant Ecology, 2007, 190, 53-69.	0.7	27
94	Characteristics of DOC Exported from Northern Hardwood Forests Receiving Chronic Experimental NO 3 â° Deposition. Ecosystems, 2007, 10, 369-379.	1.6	25
95	Does Atmospheric NO 3 â^' Deposition Alter the Abundance and Activity of Ligninolytic Fungi in Forest Soils?. Ecosystems, 2007, 10, 1278-1286.	1.6	38
96	Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, .	4.2	1
97	MICROBIAL COMMUNITY COMPOSITION AND FUNCTION ACROSS AN ARCTIC TUNDRA LANDSCAPE. Ecology, 2006, 87, 1659-1670.	1.5	83
98	A molecular dawn for biogeochemistry. Trends in Ecology and Evolution, 2006, 21, 288-295.	4.2	95
99	Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters, 2006, 9, 1127-1135.	3.0	273
100	Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. Journal of Ecology, 2006, 94, 157-170.	1.9	239
101	Overstory Community Composition and Elevated Atmospheric CO2 and O3 Modify Understory Biomass Production and Nitrogen Acquisition. Plant and Soil, 2006, 282, 251-259.	1.8	17
102	Responses of Bradford-reactive soil protein to experimental nitrogen addition in three forest communities in northern lower Michigan. Plant and Soil, 2006, 288, 173-187.	1.8	15
103	Response of Oxidative Enzyme Activities to Nitrogen Deposition Affects Soil Concentrations of Dissolved Organic Carbon. Ecosystems, 2006, 9, 921-933.	1.6	180
104	Microbial Cycling of C and N in Northern Hardwood Forests Receiving Chronic Atmospheric NO3â ⁻ Deposition. Ecosystems, 2006, 9, 242-253.	1.6	35
105	Elevated CO2 and O3 Alter Soil Nitrogen Transformations beneath Trembling Aspen, Paper Birch, and Sugar Maple. Ecosystems, 2006, 9, 1354-1363.	1.6	49
106	Fungal community composition and metabolism under elevated CO2 and O3. Oecologia, 2006, 147, 143-154.	0.9	80
107	Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia, 2006, 148, 503-516.	0.9	46
108	Chronic experimental NO3â ⁻ ' deposition reduces the retention of leaf litter DOC in a northern hardwood forest soil. Soil Biology and Biochemistry, 2006, 38, 1340-1347.	4.2	23

#	Article	IF	Citations
109	Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiology, 2006, 26, 1589-1599.	1.4	24
110	PHOSPHORUS EFFICIENCY OF BORNEAN RAIN FOREST PRODUCTIVITY: EVIDENCE AGAINST THE UNIMODAL EFFICIENCY HYPOTHESIS. Ecology, 2005, 86, 1548-1561.	1.5	69
111	Aspen Harvest Intensity Decreases Microbial Biomass, Extracellular Enzyme Activity, and Soil Nitrogen Cycling. Soil Science Society of America Journal, 2005, 69, 227-235.	1.2	101
112	Changes in Soil Microbial Community Structure in a Tallgrass Prairie Chronosequence. Soil Science Society of America Journal, 2005, 69, 1412-1421.	1.2	209
113	Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment, 2005, 28, 965-981.	2.8	236
114	Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Global Change Biology, 2005, 11, 1514-1521.	4.2	55
115	Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia, 2005, 146, 318-328.	0.9	48
116	Extracellular Enzyme Activities and Soil Organic Matter Dynamics for Northern Hardwood Forests receiving Simulated Nitrogen Deposition. Biogeochemistry, 2005, 75, 201-215.	1.7	302
117	ATMOSPHERIC NITRATE DEPOSITION AND ENHANCED DISSOLVED ORGANIC CARBON LEACHING. Soil Science Society of America Journal, 2005, 69, 1233-1237.	1.2	52
118	Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots. Tree Physiology, 2005, 25, 1501-1510.	1.4	24
119	Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide. BioScience, 2004, 54, 731.	2.2	1,092
120	Simulated chronic NO3 â^ deposition reduces soil respiration in northern hardwood forests. Global Change Biology, 2004, 10, 1080-1091.	4.2	194
121	Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry, 2004, 36, 965-971.	4.2	151
122	Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biology and Biochemistry, 2004, 36, 1443-1451.	4.2	249
123	Nitrogen deposition and dissolved organic carbon production in northern temperate forests. Soil Biology and Biochemistry, 2004, 36, 1509-1515.	4.2	66
124	Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry, 2004, 68, 179-197.	1.7	187
125	Anthropogenic N deposition and the fate of 15NO3- in a northern hardwood ecosystem. Biogeochemistry, 2004, 69, 143-157.	1.7	49
126	Microbial Community Structure and Oxidative Enzyme Activity in Nitrogen-amended North Temperate Forest Soils. Microbial Ecology, 2004, 48, 218-229.	1.4	212

#	Article	IF	CITATIONS
127	Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidentata chronosequence. Forest Ecology and Management, 2004, 191, 121-127.	1.4	42
128	NITROGEN DEPOSITION MODIFIES SOIL CARBON STORAGE THROUGH CHANGES IN MICROBIAL ENZYMATIC ACTIVITY. , 2004, 14, 1172-1177.		364
129	Atmospheric Nitrate Deposition, Microbial Community Composition, and Enzyme Activity in Northern Hardwood Forests. Soil Science Society of America Journal, 2004, 68, 132-138.	1.2	312
130	Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 2003, 17, 289-304.	1.7	269
131	Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO2 and O3. Global Change Biology, 2003, 9, 1743-1750.	4.2	57
132	Effects of CO2and nutrient availability on mineral weathering in controlled tree growth experiments. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	30
133	Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Applied Soil Ecology, 2003, 24, 263-271.	2.1	139
134	PLANT DIVERSITY, SOIL MICROBIAL COMMUNITIES, AND ECOSYSTEM FUNCTION: ARE THERE ANY LINKS?. Ecology, 2003, 84, 2042-2050.	1.5	991
135	SOIL NITROGEN CYCLING UNDER ELEVATED CO2: A SYNTHESIS OF FOREST FACE EXPERIMENTS. , 2003, 13, 1508-1514.		114
136	NITROGEN STORAGE AND CYCLING IN OLD- AND SECOND-GROWTH NORTHERN HARDWOOD FORESTS. Ecology, 2002, 83, 73-87.	1.5	70
137	Extracellular Enzyme Activity Beneath Temperate Trees Growing Under Elevated Carbon Dioxide and Ozone. Soil Science Society of America Journal, 2002, 66, 1848-1856.	1.2	117
138	Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Tree Physiology, 2002, 22, 321-329.	1.4	36
139	The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34, 1309-1315.	4.2	1,409
140	Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 2002, 113, 39-51.	1.9	260
141	Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia, 2002, 131, 236-244.	0.9	167
142	Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 2002, 420, 403-407.	13.7	275
143	Landscapeâ€Level Patterns of Microbial Community Composition and Substrate Use in Upland Forest Ecosystems. Soil Science Society of America Journal, 2001, 65, 359-367.	1.2	311
144	Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia, 2001, 128, 237-250.	0.9	163

#	Article	IF	Citations
145	Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO2 and varying N availability. Global Change Biology, 2001, 7, 65-74.	4.2	38
146	Relationships between plant nitrogen economy and life history in three deciduous-forest herbs. Journal of Ecology, 2001, 89, 385-394.	1.9	25
147	Photosynthetic adaptation and acclimation to exploit seasonal periods of direct irradiance in three temperate, deciduous-forest herbs. Functional Ecology, 2001, 15, 722-731.	1.7	112
148	Gas Exchange, Leaf Nitrogen, and Growth Efficiency of Populus tremuloides in a CO 2 -Enriched Atmosphere. , 2000, 10, 3.		3
149	Atmospheric CO 2 , Soil-N Availability, and Allocation of Biomass and Nitrogen by Populus tremuloides. , 2000, 10, 34.		3
150	Atmospheric CO 2 and the Composition and Function of Soil Microbial Communities., 2000, 10, 47.		10
151	Interactive Effects of Atmospheric CO 2 and Soil-N Availability on Fine Roots of Populus tremuloides. , 2000, 10, 18.		7
152	Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist, 2000, 147, 201-222.	3.5	413
153	GAS EXCHANGE, LEAF NITROGEN, AND GROWTH EFFICIENCY OFPOPULUS TREMULOIDESIN A CO2-ENRICHED ATMOSPHERE. , 2000, 10, 3-17.		42
154	ATMOSPHERIC CO2, SOIL-N AVAILABILITY, AND ALLOCATION OF BIOMASS AND NITROGEN BYPOPULUS TREMULOIDES. , 2000, 10, 34-46.		37
155	ATMOSPHERIC CO2AND THE COMPOSITION AND FUNCTION OF SOIL MICROBIAL COMMUNITIES. , 2000, 10, 47-59.		45
156	Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO2 and soil nitrogen availability. Tree Physiology, 2000, 20, 265-270.	1.4	49
157	MICROBIAL IMMOBILIZATION AND THE RETENTION OF ANTHROPOGENIC NITRATE IN A NORTHERN HARDWOOD FOREST. Ecology, 2000, 81, 1858-1866.	1.5	137
158	INTERACTIVE EFFECTS OF ATMOSPHERIC CO2AND SOIL-N AVAILABILITY ON FINE ROOTS OFPOPULUS TREMULOIDES. , 2000, 10, 18-33.		67
159	Clonal variation in above- and below-ground growth responses of Populus tremuloides Michaux: Influence of soil warming and nutrient availability. , 2000, , 145-156.		2
160	Genotypic variation for condensed tannin production in trembling aspen (POPULUS TREMULOIDES,) Tj ETQq0 0 0 1154-1159.	rgBT /Ove 0.8	erlock 10 Tf 61
161	Title is missing!. Plant and Soil, 1999, 217, 119-130.	1.8	98
162	Soil Temperature, Matric Potential, and the Kinetics of Microbial Respiration and Nitrogen Mineralization. Soil Science Society of America Journal, 1999, 63, 575-584.	1.2	204

#	Article	IF	CITATIONS
163	Revegetation and Nitrate Leaching from Lake States Northern Hardwood Forests Following Harvest. Soil Science Society of America Journal, 1999, 63, 1424-1429.	1.2	18
164	SOIL MICROBIAL CONTROL OF NITROGEN LOSS FOLLOWING CLEAR-CUT HARVEST IN NORTHERN HARDWOOD ECOSYSTEMS. , 1999, 9, 202-215.		79
165	Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO 2 and soil N availability. New Phytologist, 1998, 140, 251-260.	3.5	91
166	Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 1998, 18, 665-670.	1.4	379
167	DROUGHT REDUCES ROOT RESPIRATION IN SUGAR MAPLE FORESTS. , 1998, 8, 771-778.		138
168	Integration of Ecophysiological and Biogeochemical Approaches to Ecosystem Dynamics. , 1998, , 372-403.		26
169	Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiology, 1997, 17, 421-427.	1.4	83
170	Increased levels of airborne fungal spores in response to <i>Populus tremuloides</i> grown under elevated atmospheric CO ₂ . Canadian Journal of Botany, 1997, 75, 1670-1673.	1.2	47
171	Compositional and Functional Shifts in Microbial Communities Due to Soil Warming. Soil Science Society of America Journal, 1997, 61, 475-481.	1.2	684
172	Populus tremuloides photosynthesis and crown architecture in response to elevated CO2 and soil N availability. Oecologia, 1997, 110, 328-336.	0.9	23
173	Populus tremuloides. Oecologia, 1997, 110, 328.	0.9	19
174	Nitrate deposition in northern hardwood forests and the nitrogen metabolism of Acer saccharum marsh. Oecologia, 1996, 108, 338-344.	0.9	41
175	Elevated Atmospheric Carbon Dioxide and Leaf Litter Chemistry: Influences on Microbial Respiration and Net Nitrogen Mineralization. Soil Science Society of America Journal, 1996, 60, 1571-1577.	1.2	64
176	Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research, 1996, 26, 1761-1768.	0.8	55
177	Soil Microbial Communities Beneath Populus Grandidentata Grown Under Elevated Atmospheric CO2. , 1996, 6, 257-262.		195
178	Tropical Dry Forests of St. Lucia, West Indies: Vegetation and Soil Properties. Biotropica, 1996, 28, 618.	0.8	22
179	Linking Above- and Belowground Responses to Rising CO2 in Northern Deciduous Forest Species. , 1996, , 41-51.		17
180	Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist, 1995, 129, 579-585.	3.5	312

#	Article	IF	Citations
181	Nitrogen Loss from Coffee Agroecosystems in Costa Rica: Leaching and Denitrification in the Presence and Absence of Shade Trees. Journal of Environmental Quality, 1995, 24, 227-233.	1.0	70
182	Temperature Effects on Kinetics of Microbial Respiration and Net Nitrogen and Sulfur Mineralization. Soil Science Society of America Journal, 1995, 59, 233-240.	1.2	171
183	Interacting effects of soil fertility and atmospheric CO 2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinier. New Phytologist, 1995, 129, 253-263.	3.5	111
184	Fine-textured soil bands and oak forest productivity in northwestern lower Michigan, U.S.A Canadian Journal of Forest Research, 1994, 24, 928-933.	0.8	6
185	Plant Production and Soil Microorganisms in Late-Successional Ecosystems: A Continental-Scale Study. Ecology, 1994, 75, 2333.	1.5	321
186	Belowground responses to rising atmospheric CO2: Implications for plants, soil biota and ecosystem processes. Plant and Soil, 1994, 165, 1-6.	1.8	57
187	Above- and belowground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. Plant and Soil, 1994, 165, 45-51.	1.8	66
188	Geostatistical analysis of soil properties in a secondary tropical dry forest, St. Lucia, West Indies. Plant and Soil, 1994, 163, 45-54.	1.8	56
189	Nitrogen cycling in coffee agroecosystems: net N mineralization and nitrification in the presence and absence of shade trees. Agriculture, Ecosystems and Environment, 1994, 48, 107-113.	2.5	69
190	Soil Microbial Biomass Dynamics and Net Nitrogen Mineralization in Northern Hardwood Ecosystems. Soil Science Society of America Journal, 1994, 58, 238-243.	1.2	65
191	Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Canadian Journal of Forest Research, 1994, 24, 1711-1716.	0.8	113
192	Above- and belowground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. , 1994, , 45-51.		25
193	Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil, 1993, 151, 105-117.	1.8	618
194	Kinetics of Microbial Respiration and Nitrogen Mineralization in Great Lakes Forests. Soil Science Society of America Journal, 1993, 57, 1100-1106.	1.2	54
195	Early Spring Nitrogen Dynamics in a Temperate Forest Landscape. Ecology, 1993, 74, 1579-1585.	1.5	92
196	Factors controlling denitrification rates in upland and swamp forests. Canadian Journal of Forest Research, 1992, 22, 1597-1604.	0.8	51
197	Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia, 1991, 86, 349-358.	0.9	232
198	Nitrogen mineralization, nitrification and denitrification in upland and wetland ecosystems. Oecologia, 1991, 88, 189-196.	0.9	100

#	Article	IF	CITATION
199	Carbon and nitrogen cycling during old-field succession: Constraints on plant and microbial biomass. Biogeochemistry, 1990, 11, 111.	1.7	186
200	The Vernal Dam: Plant-Microbe Competition for Nitrogen in Northern Hardwood Forests. Ecology, 1990, 71, 651-656.	1.5	262
201	The nitrogen budget of a hybrid poplar plantation in Minnesota. Canadian Journal of Forest Research, 1990, 20, 1818-1822.	0.8	6
202	Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Canadian Journal of Forest Research, 1989, 19, 1521-1526.	0.8	124
203	Landscape variation in nitrogen mineralization and nitrification. Canadian Journal of Forest Research, 1986, 16, 1258-1263.	0.8	103
204	Chronic nitrogen deposition alters tree allometric relationships: Implications for biomass production and carbon storage. , 0, , .		0