
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7051486/publications.pdf Version: 2024-02-01

REDNHADD CDIMM

#	Article	IF	CITATIONS
1	Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology, 2004, 56, 1-14.	3.9	318
2	The cell biology of tetrapyrroles: a life and death struggle. Trends in Plant Science, 2010, 15, 488-498.	8.8	287
3	Sucrose Transporter StSUT4 from Potato Affects Flowering, Tuberization, and Shade Avoidance Response. Plant Physiology, 2008, 146, 323-324.	4.8	202
4	Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 968-985.	1.0	192
5	Role of Magnesium Chelatase Activity in the Early Steps of the Tetrapyrrole Biosynthetic Pathway. Plant Physiology, 2000, 122, 1161-1170.	4.8	168
6	Reduced Activity of Geranylgeranyl Reductase Leads to Loss of Chlorophyll and Tocopherol and to Partially Geranylgeranylated Chlorophyll in Transgenic Tobacco Plants Expressing Antisense RNA for Geranylgeranyl Reductase1. Plant Physiology, 1999, 120, 695-704.	4.8	157
7	Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. Journal of Experimental Botany, 2008, 59, 2659-2672.	4.8	150
8	Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development À Â. Plant Physiology, 2011, 157, 1650-1663.	4.8	150
9	Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology, 2011, 168, 1256-1263.	3.5	144
10	Regulatory network of tetrapyrrole biosynthesis - studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta, 2001, 213, 667-681.	3.2	141
11	Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta, 1999, 208, 264-273.	3.2	140
12	The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant Journal, 2007, 50, 795-809.	5.7	128
13	Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. Trends in Plant Science, 2021, 26, 484-495.	8.8	122
14	Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2023-2028.	7.1	120
15	Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant Journal, 2000, 22, 155-164.	5.7	116
16	Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of Experimental Botany, 2012, 63, 1675-1687.	4.8	116
17	Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 2006, 224, 700-709.	3.2	115
18	Posttranslational Influence of NADPH-Dependent Thioredoxin Reductase C on Enzymes in Tetrapyrrole Synthesis Â. Plant Physiology, 2013, 162, 63-73.	4.8	114

#	Article	IF	CITATIONS
19	Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant Journal, 2004, 41, 282-290.	5.7	113
20	Overexpression of Plastidic Protoporphyrinogen IX Oxidase Leads to Resistance to the Diphenyl-Ether Herbicide Acifluorfen. Plant Physiology, 2000, 122, 75-84.	4.8	111
21	Control of retrograde signalling by protein import and cytosolic folding stress. Nature Plants, 2019, 5, 525-538.	9.3	109
22	Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta, 2006, 224, 692-699.	3.2	107
23	Heme, a Plastid-Derived Regulator of Nuclear Gene Expression in <i>Chlamydomonas</i> Â. Plant Cell, 2008, 20, 552-567.	6.6	105
24	Studies on Differential Nuclear Translocation Mechanism and Assembly of the Three Subunits of the Arabidopsis thaliana Transcription Factor NF-Y. Molecular Plant, 2012, 5, 876-888.	8.3	105
25	GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis. Plant Physiology, 2016, 170, 1817-1830.	4.8	100
26	LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16721-16725.	7.1	98
27	The early light-inducible proteins of Barley o. Characterization of two families of 2-h-specific nuclear-coded chloroplast proteins. FEBS Journal, 1987, 167, 493-499.	0.2	97
28	Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant Journal, 1997, 12, 981-990.	5.7	97
29	An <i>Arabidopsis</i> GluTR Binding Protein Mediates Spatial Separation of 5-Aminolevulinic Acid Synthesis in Chloroplasts. Plant Cell, 2011, 23, 4476-4491.	6.6	96
30	A Novel Protective Function for Cytokinin in the Light Stress Response Is Mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 Receptors Â. Plant Physiology, 2014, 164, 1470-1483.	4.8	96
31	Expression of Uroporphyrinogen Decarboxylase or Coproporphyrinogen Oxidase Antisense RNA in Tobacco Induces Pathogen Defense Responses Conferring Increased Resistance to Tobacco Mosaic Virus. Journal of Biological Chemistry, 1999, 274, 4231-4238.	3.4	94
32	Influence of a cyanobacterial crude extract containing microcystin‣R on the physiology and antioxidative defence systems of different spinach variants. New Phytologist, 2007, 175, 482-489.	7.3	91
33	GUN4 Is Required for Posttranslational Control of Plant Tetrapyrrole Biosynthesis. Molecular Plant, 2009, 2, 1198-1210.	8.3	88
34	Photosystem II Supercomplex Remodeling Serves as an Entry Mechanism for State Transitions in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 2964-2977.	6.6	88
35	Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynthesis Research, 2015, 126, 189-202.	2.9	88
36	Cytokinin Regulates the Etioplast-Chloroplast Transition through the Two-Component Signaling System and Activation of Chloroplast-Related Genes. Plant Physiology, 2016, 172, 464-478.	4.8	85

#	Article	IF	CITATIONS
37	Posttranslational Control of ALA Synthesis Includes GluTR Degradation by Clp Protease and Stabilization by GluTR-Binding Protein. Plant Physiology, 2016, 170, 2040-2051.	4.8	85
38	Thioredoxin Redox Regulates ATPase Activity of Magnesium Chelatase CHLI Subunit and Modulates Redox-Mediated Signaling in Tetrapyrrole Biosynthesis and Homeostasis of Reactive Oxygen Species in Pea Plants Â. Plant Physiology, 2012, 159, 118-130.	4.8	84
39	A mitochondrial protein homologous to the mammalian peripheralâ€ŧype benzodiazepine receptor is essential for stress adaptation in plants. Plant Journal, 2007, 51, 1004-1018.	5.7	83
40	Transport and Sorting of the <i>Solanum tuberosum</i> Sucrose Transporter SUT1 Is Affected by Posttranslational Modification. Plant Cell, 2008, 20, 2497-2513.	6.6	83
41	Homologous NF-YC2 Subunit from Arabidopsis and Tobacco Is Activated by Photooxidative Stress and Induces Flowering. International Journal of Molecular Sciences, 2012, 13, 3458-3477.	4.1	81
42	Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damageâ€. Plant Journal, 2007, 50, 293-304.	5.7	80
43	Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Molecular Biology, 2009, 71, 425-436.	3.9	78
44	Importance of the Cyanobacterial Gun4 Protein for Chlorophyll Metabolism and Assembly of Photosynthetic Complexes. Journal of Biological Chemistry, 2008, 283, 25794-25802.	3.4	77
45	Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant Journal, 2001, 28, 41-50.	5.7	76
46	Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Frontiers in Plant Science, 2013, 4, 26.	3.6	76
47	Meta-Analysis of Retrograde Signaling in Arabidopsis thaliana Reveals a Core Module of Genes Embedded in Complex Cellular Signaling Networks. Molecular Plant, 2014, 7, 1167-1190.	8.3	69
48	Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Research Communications, 1989, 54, 67-79.	1.8	68
49	Rapid Dark Repression of 5-Aminolevulinic Acid Synthesis in Green Barley Leaves. Plant and Cell Physiology, 2010, 51, 670-681.	3.1	68
50	The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany, 2014, 65, 1619-1636.	4.8	68
51	Functional characterization of the two ferrochelatases in <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2015, 38, 280-298.	5.7	67
52	Characterization of the Phosphofructokinase Gene Family in Rice and Its Expression Under Oxygen Deficiency Stress. Frontiers in Plant Science, 2013, 4, 125.	3.6	63
53	Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery. Plant Cell, 2015, 27, tpc.15.00574.	6.6	63
54	Defense Responses to Tetrapyrrole-Induced Oxidative Stress in Transgenic Plants with Reduced Uroporphyrinogen Decarboxylase or Coproporphyrinogen Oxidase Activity1. Plant Physiology, 1998, 116, 107-116.	4.8	61

#	Article	IF	CITATIONS
55	A Novel Arabidopsis thaliana Protein is a Functional Peripheral-Type Benzodiazepine Receptor. Plant and Cell Physiology, 2004, 45, 723-733.	3.1	59
56	Regulation of lutein biosynthesis and prolamellar body formation in Arabidopsis. Functional Plant Biology, 2007, 34, 663.	2.1	59
57	De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant Journal, 2010, 64, 589-603.	5.7	59
58	Coproporphyrinogen III oxidase from barley and tobacco ? sequence analysis and initial expression studies. Planta, 1995, 196, 796-803.	3.2	58
59	<i>Arabidopsis</i> Chlorophyll Biosynthesis: An Essential Balance between the Methylerythritol Phosphate and Tetrapyrrole Pathways Â. Plant Cell, 2014, 25, 4984-4993.	6.6	58
60	Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant Journal, 2003, 35, 512-522.	5.7	56
61	Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants. Frontiers in Plant Science, 2013, 4, 371.	3.6	56
62	Thegun4gene is essential for cyanobacterial porphyrin metabolism. FEBS Letters, 2004, 571, 119-123.	2.8	55
63	Induced Deactivation of Genes Encoding Chlorophyll Biosynthesis Enzymes Disentangles Tetrapyrrole-Mediated Retrograde Signaling. Molecular Plant, 2014, 7, 1211-1227.	8.3	55
64	LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in <i>Arabidopsis thaliana</i> . Plant Physiology, 2017, 174, 1037-1050.	4.8	55
65	Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. Planta, 1997, 202, 235-241.	3.2	53
66	Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant Molecular Biology, 2008, 67, 535-546.	3.9	53
67	Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis. Plant Physiology, 2017, 175, 652-666.	4.8	53
68	ONE-HELIX PROTEIN2 (OHP2) Is Required for the Stability of OHP1 and Assembly Factor HCF244 and Is Functionally Linked to PSII Biogenesis. Plant Physiology, 2018, 177, 1453-1472.	4.8	51
69	LCAA, a Novel Factor Required for Magnesium Protoporphyrin Monomethylester Cyclase Accumulation and Feedback Control of Aminolevulinic Acid Biosynthesis in Tobacco Â. Plant Physiology, 2012, 160, 1923-1939.	4.8	50
70	A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE1 Â. Plant Physiology, 2014, 165, 774-790.	4.8	50
71	Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant Journal, 1996, 9, 867-878.	5.7	49
72	Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Molecular Biology, 2005, 57, 679-691.	3.9	47

#	Article	IF	CITATIONS
73	Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network. Plant Physiology and Biochemistry, 2013, 65, 17-26.	5.8	46
74	LLM-Domain B-GATA Transcription Factors Play Multifaceted Roles in Controlling Greening in Arabidopsis. Plant Cell, 2018, 30, 582-599.	6.6	46
75	Crystal Structure and Substrate Binding Modeling of the Uroporphyrinogen-III Decarboxylase from Nicotiana tabacum. Journal of Biological Chemistry, 2001, 276, 44108-44116.	3.4	45
76	Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3588-E3596.	7.1	45
77	Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions. Plant and Cell Physiology, 2010, 51, 1229-1241.	3.1	44
78	Acclimation in plants – the Green Hub consortium. Plant Journal, 2021, 106, 23-40.	5.7	44
79	Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma, 2016, 253, 1063-1079.	2.1	42
80	Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. Plant Journal, 2006, 48, 499-510.	5.7	41
81	Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling. Frontiers in Plant Science, 2012, 3, 236.	3.6	41
82	The <scp>GUN</scp> 4 protein plays a regulatory role in tetrapyrrole biosynthesis and chloroplastâ€toâ€nucleus signalling in <i><scp>C</scp>hlamydomonas reinhardtii</i> . Plant Journal, 2014, 79, 285-298.	5.7	41
83	Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nature Communications, 2020, 11, 1254.	12.8	41
84	The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. ELife, 2019, 8, .	6.0	40
85	The Potato Sucrose Transporter StSUT1 Interacts with a DRM-Associated Protein Disulfide Isomerase. Molecular Plant, 2012, 5, 43-62.	8.3	39
86	HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase. Plant Molecular Biology, 2007, 64, 733-742.	3.9	38
87	Identification of Early Nuclear Target Genes of Plastidial Redox Signals that Trigger the Long-Term Response of Arabidopsis to Light Quality Shifts. Molecular Plant, 2015, 8, 1237-1252.	8.3	38
88	Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. Plant Molecular Biology, 2014, 86, 271-287.	3.9	37
89	Recycling of Solanum Sucrose Transporters Expressed in Yeast, Tobacco, and in Mature Phloem Sieve Elements. Molecular Plant, 2010, 3, 1064-1074.	8.3	35
90	Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1458-1467.	1.0	34

#	Article	IF	CITATIONS
91	Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. Plant Molecular Biology, 2010, 72, 643-658.	3.9	34
92	Alleviation of ultraviolet-C-induced oxidative damage through overexpression of cytosolic ascorbate peroxidase. Biologia (Poland), 2011, 66, 1052-1059.	1.5	34
93	Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis. International Journal of Molecular Sciences, 2012, 13, 14086-14105.	4.1	34
94	Phosphorylation of GENOMES UNCOUPLED 4 Alters Stimulation of Mg Chelatase Activity in Angiosperms. Plant Physiology, 2016, 172, 1578-1595.	4.8	34
95	Overexpression of HEMA1 encoding glutamyl-tRNA reductase. Journal of Plant Physiology, 2011, 168, 1372-1379.	3.5	33
96	Fluorescence in blue light (FLU) is involved in inactivation and localization of glutamylâ€ŧRNA reductase during light exposure. Plant Journal, 2019, 97, 517-529.	5.7	33
97	Isolation and characterisation of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX. Plant Molecular Biology, 1997, 35, 1053-1056.	3.9	32
98	Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue. Plant Molecular Biology, 2012, 78, 77-93.	3.9	32
99	Methods for Analysis of Photosynthetic Pigments and Steady-State Levels of Intermediates of Tetrapyrrole Biosynthesis. Methods in Molecular Biology, 2011, 775, 357-385.	0.9	32
100	An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Molecular Genetics and Genomics, 2005, 273, 311-318.	2.1	31
101	ONE-HELIX PROTEIN1 and 2 Form Heterodimers to Bind Chlorophyll in Photosystem II Biogenesis. Plant Physiology, 2020, 183, 179-193.	4.8	29
102	The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Communications Biology, 2019, 2, 159.	4.4	28
103	Inhibition of TOR Represses Nutrient Consumption, Which Improves Greening after Extended Periods of Etiolation. Plant Physiology, 2018, 178, 101-117.	4.8	27
104	The analysis of the Chll 1 and Chll 2 genes using acifluorfen-resistant mutant of Arabidopsis thaliana. Planta, 2007, 225, 935-943.	3.2	26
105	Functions of the water soluble chlorophyll-binding protein in plants. Journal of Plant Physiology, 2011, 168, 1444-1451.	3.5	26
106	GluTR2 Complements a hema1 Mutant Lacking Glutamyl-tRNA Reductase 1, but is Differently Regulated at the Post-Translational Level. Plant and Cell Physiology, 2014, 55, 645-657.	3.1	26
107	Mg chelatase in chlorophyll synthesis and retrograde signaling in <i>Chlamydomonas reinhardtii</i> : CHLl2 cannot substitute for CHLl1. Journal of Experimental Botany, 2016, 67, 3925-3938.	4.8	26
108	Complementation studies of the <scp>A</scp> rabidopsis <i>fc1</i> mutant substantiate essential functions of ferrochelatase 1 during embryogenesis and salt stress. Plant, Cell and Environment, 2019, 42, 618-632.	5.7	26

#	Article	IF	CITATIONS
109	Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock. Nature Plants, 2021, 7, 1420-1432.	9.3	26
110	Potential roles of <scp>YCF</scp> 54 and ferredoxinâ€ <scp>NADPH</scp> reductase for magnesium protoporphyrin monomethylester cyclase. Plant Journal, 2018, 94, 485-496.	5.7	25
111	A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta, 2009, 230, 165-176.	3.2	24
112	Altered levels of <scp>LIL</scp> 3 isoforms in <i>Arabidopsis</i> lead to disturbed pigment–protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance. Plant, Cell and Environment, 2015, 38, 2115-2127.	5.7	24
113	Redoxâ€control of chlorophyll biosynthesis mainly depends on thioredoxins. FEBS Letters, 2018, 592, 3111-3115.	2.8	24
114	The <i>genomes uncoupled</i> -dependent signalling pathway coordinates plastid biogenesis with the synthesis of anthocyanins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190403.	4.0	24
115	Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements. Plant Signaling and Behavior, 2008, 3, 1136-1137.	2.4	21
116	Establishment of a Photoautotrophic Cell Suspension Culture of Arabidopsis thaliana for Photosynthetic, Metabolic, and Signaling Studies. Molecular Plant, 2012, 5, 524-527.	8.3	20
117	Characterization of a Plastoglobule-Localized SOUL4 Heme-Binding Protein in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 2.	3.6	20
118	Silencing of a plant gene by transcriptional interference. Nucleic Acids Research, 2009, 37, 3739-3746.	14.5	18
119	Arabidopsis Mg-Protoporphyrin IX Methyltransferase Activity and Redox Regulation Depend on Conserved Cysteines. Plant and Cell Physiology, 2016, 57, 519-527.	3.1	18
120	Transgenic Tobacco Lines Expressing Sense or AntisenseFERROCHELATASE 1RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1. Plant and Cell Physiology, 2016, 57, 2576-2585.	3.1	17
121	The DnaJ proteins DJA6 and DJA5 are essential for chloroplast iron–sulfur cluster biogenesis. EMBO Journal, 2021, 40, e106742.	7.8	17
122	Transient-State Kinetic Analysis ofSynechococcusGlutamate 1-Semialdehyde Aminotransferaseâ€. Biochemistry, 1998, 37, 319-329.	2.5	16
123	Comparative Analysis of Light-Harvesting Antennae and State Transition in <i>chlorina</i> and cpSRP Mutants. Plant Physiology, 2016, 172, 1519-1531.	4.8	16
124	Function of Tetrapyrroles, Regulation of Tetrapyrrole Metabolism and Methods for Analyses of Tetrapyrroles. Procedia Chemistry, 2015, 14, 171-175.	0.7	15
125	The Flavoproteome of the Model Plant Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 5371.	4.1	15
126	Crystallization and Preliminary X-ray Analysis of Wild-type and K272A Mutant Glutamate 1-Semialdehyde Aminotransferase from Synechococcus. Journal of Molecular Biology, 1994, 242, 591-594.	4.2	14

#	Article	IF	CITATIONS
127	Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce. Photosynthesis Research, 2017, 132, 165-179.	2.9	13
128	Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis. Biological Chemistry, 2021, 402, 379-397.	2.5	13
129	Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis. Journal of Experimental Botany, 2022, 73, 4624-4636.	4.8	13
130	Comparative functional analysis of two hypothetical chloroplast open reading frames (ycf) involved in chlorophyll biosynthesis from Synechocystis sp. PCC6803 and plants. Journal of Plant Physiology, 2011, 168, 1380-1386.	3.5	12
131	Chlorophyll <i>a</i> phytylation is required for the stability of photosystems <scp>I</scp> and <scp>II</scp> in the cyanobacterium <i><scp>S</scp>ynechocystis</i> sp. <scp>PCC</scp> 6803. Plant Journal, 2013, 73, 336-346.	5.7	12
132	Production of ketocarotenoids in tobacco alters the photosynthetic efficiency by reducing photosystem II supercomplex and LHCII trimer stability. Photosynthesis Research, 2015, 123, 157-165.	2.9	12
133	The extreme Albino3 (Alb3) C terminus is required for Alb3 stability and function in Arabidopsis thaliana. Planta, 2015, 242, 733-746.	3.2	12
134	<i>In vivo</i> functional analysis of the structural domains of FLUORESCENT (FLU). Plant Journal, 2021, 107, 360-376.	5.7	12
135	New insights in the topology of the biosynthesis of 5-aminolevulinic acid. Plant Signaling and Behavior, 2013, 8, e23124.	2.4	11
136	Controlled Partitioning of Glutamyl-tRNA Reductase in Stroma- and Membrane-Associated Fractions Affects the Synthesis of 5-Aminolevulinic Acid. Plant and Cell Physiology, 2018, 59, 2204-2213.	3.1	11
137	Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. Journal of Physical Chemistry Letters, 2020, 11, 9387-9392.	4.6	11
138	The Pathway from 5-Aminolevulinic Acid to Protochlorophyllide and Protoheme. , 2006, , 173-188.		10
139	Intra- and interspecific differences of 10 barley and 10 tomato cultivars in response to short-time UV-B radiation: A study analysing thermoluminescence, fluorescence, gas-exchange and biochemical parameters. Environmental Pollution, 2009, 157, 1603-1612.	7.5	10
140	Intracellular Communication. Molecular Plant, 2014, 7, 1071-1074.	8.3	10
141	Porphyrin and heme synthesis. Advances in Botanical Research, 2019, 91, 89-131.	1.1	10
142	Chlorophyll dephytylase 1 and chlorophyll synthase: a chlorophyll salvage pathway for the turnover of photosystems I and <scp>II</scp> . Plant Journal, 2022, 111, 979-994.	5.7	10
143	Site directed mutagenesis of StSUT1 reveals target amino acids ofÂregulation and stability. Biochimie, 2013, 95, 2132-2144.	2.6	9
144	Requirement of ONE-HELIX PROTEIN 1 (OHP1) in early <i>Arabidopsis</i> seedling development and under high light intensity. Plant Signaling and Behavior, 2018, 13, e1550317.	2.4	9

#	Article	IF	CITATIONS
145	Towards Initial Indications for a Thiol-Based Redox Control of Arabidopsis 5-Aminolevulinic Acid Dehydratase. Antioxidants, 2018, 7, 152.	5.1	9
146	Identification of four plastidâ€localized protein kinases. FEBS Letters, 2016, 590, 1749-1756.	2.8	8
147	Two chloroplastâ€localized <scp>MORF</scp> proteins act as chaperones to maintain tetrapyrrole biosynthesis. New Phytologist, 2022, 235, 1868-1883.	7.3	8
148	Regulatory Mechanisms of Eukaryotic Tetrapyrrole Biosynthesis. , 2003, , 1-32.		7
149	Consequences of chlorophyll deficiency for leaf carotenoid composition in tobacco synthesizing glutamate 1-semialdehyde aminotransferase antisense RNA: dependency on developmental age and growth light. Journal of Experimental Botany, 1998, 49, 535-546.	4.8	7
150	MapB Protein is the Essential Methionine Aminopeptidase in Mycobacterium tuberculosis. Cells, 2019, 8, 393.	4.1	6
151	Posttranslational control of tetrapyrrole biosynthesis: Interacting proteins, chaperones, auxiliary factors. Advances in Botanical Research, 2019, , 163-194.	1.1	5
152	Involvement of Tetrapyrroles in Cellular Regulation. , 2006, , 223-235.		3
153	Chapter 3 Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in the Mg Branch of Tetrapyrrole Biosynthesis. Advances in Photosynthesis and Respiration, 2010, , 39-54.	1.0	3
154	The multifaceted regulation of 5-aminolevulinic acid synthesis. Numerous ways to control glutamyl-tRNA reductase. Advances in Botanical Research, 2019, , 69-87.	1.1	2
155	Elena Yaronskaya (10.05.1955–24.09.2011). Photosynthesis Research, 2012, 111, 259-260.	2.9	0
156	Expression and Purification of Arabidopsis Transmembrane Protein BCM1 in Saccharomyces cerevisiae. Bio-protocol, 2020, 10, e3758.	0.4	0
157	Client Specificity of an ATPâ€independent Chaperone is Regulated by a Temperature Sensitive Switch. FASEB Journal, 2022, 36, .	0.5	0