Md-Monirul Islam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7050273/publications.pdf

Version: 2024-02-01

64 papers 4,008 citations

28 h-index 63 g-index

66 all docs

66
docs citations

66 times ranked 7076 citing authors

#	Article	IF	CITATIONS
1	Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy and Environmental Science, 2011, 4, 1855.	30.8	414
2	Scalable Oneâ€Step Wetâ€Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles. Advanced Functional Materials, 2013, 23, 5345-5354.	14.9	354
3	Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. Journal of Materials Chemistry, 2011, 21, 5128.	6.7	288
4	Graphene oxide dispersions: tuning rheology to enable fabrication. Materials Horizons, 2014, 1, 326-331.	12.2	276
5	An Allâ€Integrated Anode via Interlinked Chemical Bonding between Doubleâ€Shelled–Yolkâ€Structured Silicon and Binder for Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1703028.	21.0	238
6	High-surface-area α-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. Journal of Materials Chemistry, 2010, 20, 2092.	6.7	228
7	Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nature Communications, 2018, 9, 3645.	12.8	204
8	Wearable energy-smart ribbons for synchronous energy harvest and storage. Nature Communications, 2016, 7, 13319.	12.8	147
9	Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 5290-5302.	10.3	118
10	Formation and processability of liquid crystalline dispersions of graphene oxide. Materials Horizons, 2014, 1, 87-91.	12.2	113
11	Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2078-2087.	8.0	113
12	Enhanced Hydrogen Storage in Graphene Oxideâ€MWCNTs Composite at Room Temperature. Advanced Energy Materials, 2012, 2, 1439-1446.	19.5	97
13	Globular reduced graphene oxide-metal oxide structures for energy storage applications. Energy and Environmental Science, 2012, 5, 5236-5240.	30.8	69
14	Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor. RSC Advances, 2015, 5, 30679-30686.	3.6	64
15	First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica, 2016, 32, 1444-1452.	0.7	61
16	Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices. ACS Central Science, 2015, 1, 206-216.	11.3	60
17	Electrochemical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics, 2017, 94, 63-73.	10.1	60
18	Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres. Scientific Reports, 2015, 5, 11989.	3.3	58

#	Article	IF	CITATIONS
19	A Conductive Polypyrroleâ€Coated, Sulfur–Carbon Nanotube Composite for Use in Lithium–Sulfur Batteries. ChemPlusChem, 2013, 78, 318-324.	2.8	57
20	Progress and Challenges for Allâ€Solidâ€State Sodium Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000057.	5.8	49
21	Architecting Freestanding Sulfur Cathodes for Superior Roomâ€√emperature Na–S Batteries. Advanced Functional Materials, 2021, 31, 2102280.	14.9	46
22	Liquid Crystalline Graphene Oxide/PEDOT:PSS Self-Assembled 3D Architecture for Binder-Free Supercapacitor Electrodes. Frontiers in Energy Research, 2014, 2, .	2.3	45
23	Li ₂ Sâ€Based Liâ€lon Sulfur Batteries: Progress and Prospects. Small, 2021, 17, e1903934.	10.0	41
24	In situ engineering of urchin-like reduced graphene oxide–Mn ₂ O ₃ 33O ₄ nanostructures for supercapacitors. RSC Advances, 2014, 4, 886-892.	3.6	40
25	Highâ€Z Nanostructured Ceramics in Radiotherapy: First Evidence of Ta ₂ O ₅ â€Induced Dose Enhancement on Radioresistant Cancer Cells in an MV Photon Field. Particle and Particle Systems Characterization, 2014, 31, 500-505.	2.3	38
26	Synthesis of potential theranostic system consisting of methotrexate-immobilized (3-aminopropyl)trimethoxysilane coated α-Bi2O3 nanoparticles for cancer treatment. RSC Advances, 2014, 4, 24412.	3.6	38
27	Synthesis of methotrexate-loaded tantalum pentoxide–poly(acrylic acid) nanoparticles for controlled drug release applications. Journal of Colloid and Interface Science, 2019, 538, 286-296.	9.4	34
28	ZnO/CeO2 nanocomposite with low photocatalytic activity as efficient UV filters. Journal of Materials Science, 2020, 55, 6834-6847.	3.7	31
29	Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries. Journal of Applied Electrochemistry, 2010, 40, 1415-1419.	2.9	29
30	Alkaliâ€Metal Sulfide as Cathodes toward Safe and Highâ€Capacity Metal (M = Li, Na, K) Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001764.	19.5	29
31	Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations. Physica Medica, 2016, 32, 1584-1593.	0.7	28
32	Research Progress and Future Perspectives on Rechargeable Naâ€O ₂ and Naâ€CO ₂ Batteries. Energy and Environmental Materials, 2021, 4, 158-177.	12.8	25
33	Multifunctional Fe ₂ O ₃ /CeO ₂ nanocomposites for free radical scavenging ultraviolet protection. RSC Advances, 2016, 6, 65397-65402.	3.6	24
34	The Dual Functions of Defectâ€Rich Carbon Nanotubes as Both Conductive Matrix and Efficient Mediator for LiS Batteries. Small, 2021, 17, e2103535.	10.0	23
35	Study of the effect of ceramic Ta2O5 nanoparticle distribution on cellular dose enhancement in a kilovoltage photon field. Physica Medica, 2016, 32, 1216-1224.	0.7	22
36	Liquidâ€Crystalâ€Mediated Selfâ€Assembly of Porous αâ€Fe ₂ O ₃ Nanorods on PEDOT:PSSâ€Functionalized Graphene as a Flexible Ternary Architecture for Capacitive Energy Storage. Particle and Particle Systems Characterization, 2016, 33, 27-37.	2.3	22

#	Article	IF	CITATIONS
37	Optimizing dose enhancement with Ta 2 O 5 nanoparticles for synchrotron microbeam activated radiation therapy. Physica Medica, 2016, 32, 1852-1861.	0.7	21
38	Porous carbon architectures with different dimensionalities for lithium metal storage. Science and Technology of Advanced Materials, 2022, 23, 169-188.	6.1	21
39	The effects of cerium doping on the size, morphology, and optical properties of î±-hematite nanoparticles for ultraviolet filtration. Materials Research Bulletin, 2013, 48, 4521-4525.	5.2	20
40	Liquid Crystalline Dispersions of Grapheneâ€Oxideâ€Based Hybrids: A Practical Approach towards the Next Generation of 3D Isotropic Architectures for Energy Storage Applications. Particle and Particle Systems Characterization, 2014, 31, 465-473.	2.3	20
41	A Facile Synthesis of Highâ€Surfaceâ€Area Sulfur–Carbon Composites for Li/S Batteries. Chemistry - A European Journal, 2015, 21, 10061-10069.	3.3	20
42	Biocompatible Bi(OH)3 nanoparticles with reduced photocatalytic activity as possible ultraviolet filter in sunscreens. Materials Research Bulletin, 2018, 108, 130-141.	5.2	19
43	Na-doped ZnO UV filters with reduced photocatalytic activity for sunscreen applications. Journal of Materials Science, 2020, 55, 2772-2786.	3.7	19
44	Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li–S Batteries. ACS Applied Materials & Liaeth (13, 28405-28414).	8.0	19
45	Nanostructured CoS ₂ -Decorated Hollow Carbon Spheres: A Performance Booster for Li-lon/Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 6447-6459.	5.1	17
46	Development of CeO ₂ nanodot encrusted TiO ₂ nanoparticles with reduced photocatalytic activity and increased biocompatibility towards a human keratinocyte cell line. Journal of Materials Chemistry B, 2020, 8, 4016-4028.	5.8	17
47	Y2O3 decorated TiO2 nanoparticles: Enhanced UV attenuation and suppressed photocatalytic activity with promise for cosmetic and sunscreen applications. Journal of Photochemistry and Photobiology B: Biology, 2020, 207, 111883.	3.8	16
48	Ternary Porous Sulfur/Dual-Carbon Architectures for Lithium/Sulfur Batteries Obtained Continuously and on a Large Scale via an Industry-Oriented Spray-Pyrolysis/Sublimation Method. ACS Applied Materials & Diterfaces, 2016, 8, 25251-25260.	8.0	15
49	Engineering of Bismuth Oxide Nanoparticles to Induce Differential Biochemical Activity in Malignant and Nonmalignant Cells. Particle and Particle Systems Characterization, 2014, 31, 960-964.	2.3	14
50	Liquidâ€Crystalâ€Mediated 3D Macrostructured Composite of Co/Co ₃ O ₄ Embedded in Graphene: Freeâ€Standing Electrode for Efficient Water Splitting. Particle and Particle Systems Characterization, 2017, 34, 1600386.	2.3	14
51	A chemically modified graphene oxide wrapped porous hematite nano-architecture as a high rate lithium-ion battery anode material. RSC Advances, 2016, 6, 82698-82706.	3.6	12
52	TiO ₂ /(BiO) ₂ CO ₃ nanocomposites for ultraviolet filtration with reduced photocatalytic activity. Journal of Materials Chemistry C, 2018, 6, 5639-5650.	5.5	12
53	Nano-sunscreens – a double-edged sword in protecting consumers from harm: viewing Australian regulatory policies through the lenses of the European Union. Critical Reviews in Toxicology, 2019, 49, 122-139.	3.9	12
54	Tubular TiO ₂ Nanostructures: Toward Safer Microsupercapacitors. Advanced Materials Technologies, 2018, 3, 1700194.	5.8	9

#	Article	IF	CITATIONS
55	Hydrothermal synthesis of rutile TiO2 nanorods and their decoration with CeO2 nanoparticles as low-photocatalytic active ingredients in UV filtering applications. Journal of Materials Science, 2020, 55, 8095-8108.	3.7	9
56	Mass production of Li ₄ Ti ₅ O ₁₂ with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. RSC Advances, 2014, 4, 38568-38574.	3.6	8
57	High performance pure sulfur honeycomb-like architectures synthesized by a cooperative self-assembly strategy for lithium–sulfur batteries. RSC Advances, 2014, 4, 36513-36516.	3.6	8
58	Nanostructured Metal Oxides as Electrode Materials for Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2009, 9, 1263-1267.	0.9	7
59	First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement. Materials Science and Engineering C, 2021, 123, 111970.	7.3	7
60	Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress. ACS Applied Materials & Stress, 2021, 13, 2204-2217.	8.0	6
61	Graphene Oxide: Scalable One-Step Wet-Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles (Adv. Funct. Mater. 43/2013). Advanced Functional Materials, 2013, 23, 5344-5344.	14.9	5
62	Design of selfâ€assembled TiO ₂ architectures: Towards hybrid nanotubular interfaces. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 938-945.	1.8	4
63	Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy. Journal of Materials Chemistry B, 2021, 9, 5805-5817.	5.8	3
64	Significant Reduction in Thermal Conductivity and Improved Thermopower of Electronâ€Doped Ba 1– x La x TiO 3 with Nanostructured Rectangular Pores. Advanced Electronic Materials, 2021, 7, 2001044.	5.1	1