Chi-Yuen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705014/publications.pdf Version: 2024-02-01

CHI-YLIEN WANC

#	Article	IF	CITATIONS
1	Effects of Unsaturated Flow on Hydraulic Head Response to Earth Tides–An Analytical Model. Water Resources Research, 2022, 58, .	4.2	8
2	A New Mechanism for Earthquakeâ€Enhanced Permeability. Water Resources Research, 2022, 58, .	4.2	4
3	Seasonal change of groundwater response to Earth tides. Journal of Hydrology, 2022, 612, 128118.	5.4	3
4	Groundwater Level. Lecture Notes in Earth System Sciences, 2021, , 155-200.	0.6	0
5	Water and Earthquakes. Lecture Notes in Earth System Sciences, 2021, , .	0.6	24
6	Response to Tides, Barometric Pressure and Seismic Waves. Lecture Notes in Earth System Sciences, 2021, , 83-153.	0.6	2
7	Groundwater and Stream Composition. Lecture Notes in Earth System Sciences, 2021, , 257-287.	0.6	1
8	Groundwater Temperature. Lecture Notes in Earth System Sciences, 2021, , 231-256.	0.6	1
9	Stream Flow. Lecture Notes in Earth System Sciences, 2021, , 201-230.	0.6	0
10	Hydro-mechanical coupling in the shallow crust – Insight from groundwater level and satellite radar imagery in a mining area. Journal of Hydrology, 2021, 594, 125649.	5.4	5
11	Are Deep Aquifers Really Confined? Insights From Deep Groundwater Tidal Responses in the North China Platform. Water Resources Research, 2021, 57, e2021WR030195.	4.2	14
12	Frequency-dependent groundwater response to earthquakes in carbonate aquifer. Journal of Hydrology, 2021, 603, 127153.	5.4	4
13	Response of leaky aquifers to Earth tides – Interpreted with numerical simulation. Journal of Hydrology, 2020, 581, 124458.	5.4	11
14	Shaking Water Out of Sands: An Experimental Study. Water Resources Research, 2020, 56, e2020WR028153.	4.2	9
15	Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nature Communications, 2020, 11, 2776.	12.8	48
16	Coseismic Groundwater Drawdown Along Crustal Ruptures During the 2016 M _w 7.0 Kumamoto Earthquake. Water Resources Research, 2019, 55, 5891-5903.	4.2	63
17	Capillary Effects on Groundwater Response to Earth Tides. Water Resources Research, 2019, 55, 6886-6895.	4.2	18
18	Fault stress inversion reveals seismogenic asperity of the 2011 Mw 9.0 Tohoku-Oki earthquake. Scientific Reports, 2019, 9, 11987.	3.3	3

CHI-YUEN WANG

#	Article	IF	CITATIONS
19	Squeezing Marsquakes Out of Groundwater. Geophysical Research Letters, 2019, 46, 6333-6340.	4.0	9
20	Unexpected far-field hydrological response to a great earthquake. Earth and Planetary Science Letters, 2019, 519, 202-212.	4.4	26
21	Seasonal Permeability Change of the Shallow Crust Inferred From Deep Well Monitoring. Geophysical Research Letters, 2018, 45, 11,130.	4.0	15
22	Tidal Response of Groundwater in a Leaky Aquifer—Application to Oklahoma. Water Resources Research, 2018, 54, 8019-8033.	4.2	70
23	Streamflow Changes in the Vicinity of Seismogenic Fault After the 1999 Chi–Chi Earthquake. Pure and Applied Geophysics, 2018, 175, 2425-2434.	1.9	7
24	Influence of pore pressure change on coseismic volumetric strain. Earth and Planetary Science Letters, 2017, 475, 152-159.	4.4	19
25	Regional changes in streamflow after a megathrust earthquake. Earth and Planetary Science Letters, 2017, 458, 418-428.	4.4	75
26	Increased stream discharge after the 3 September 2016 M w 5.8 Pawnee, Oklahoma earthquake. Geophysical Research Letters, 2016, 43, 11,588.	4.0	52
27	Large earthquakes create vertical permeability by breaching aquitards. Water Resources Research, 2016, 52, 5923-5937.	4.2	75
28	Disruption of groundwater systems by earthquakes. Geophysical Research Letters, 2015, 42, 9758-9763.	4.0	47
29	Earthquake Hydrology. , 2015, , 305-328.		53
30	Shaking water out of soil. Geology, 2015, 43, 207-210.	4.4	36
31	Initiation of the Lusi mudflow disaster. Nature Geoscience, 2015, 8, 493-494.	12.9	32
32	New streams and springs after the 2014 Mw6.0 South Napa earthquake. Nature Communications, 2015, 6, 7597.	12.8	65
33	Mechanism of co-seismic water level change following four great earthquakes – insights from co-seismic responses throughout the Chinese mainland. Earth and Planetary Science Letters, 2015, 430, 66-74.	4.4	90
34	Continentalâ€scale waterâ€level response to a large earthquake. Geofluids, 2015, 15, 310-320.	0.7	42
35	Comparison of hydrological responses to the Wenchuan and Lushan earthquakes. Earth and Planetary Science Letters, 2014, 391, 193-200.	4.4	50

3

CHI-YUEN WANG

#	Article	IF	CITATIONS
37	Temperature beneath Tibet. Earth and Planetary Science Letters, 2013, 375, 326-337.	4.4	42
38	Moho, seismogenesis, and rheology of the lithosphere. Tectonophysics, 2013, 609, 491-503.	2.2	31
39	Basinâ€scale transport of heat and fluid induced by earthquakes. Geophysical Research Letters, 2013, 40, 3893-3897.	4.0	41
40	Transient change in groundwater temperature after earthquakes. Geology, 2012, 40, 119-122.	4.4	54
41	New lakes in the Taklamakan Desert. Geophysical Research Letters, 2012, 39, .	4.0	13
42	Mechanics of Old Faithful Geyser, Calistoga, California. Geophysical Research Letters, 2012, 39, .	4.0	21
43	Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Reviews of Geophysics, 2012, 50, .	23.0	340
44	High pore pressure, or its absence, in the San Andreas Fault. Geology, 2011, 39, 1047-1050.	4.4	12
45	A permeability-change model for water-level changes triggered by teleseismic waves. Geofluids, 2011, 11, 302-308.	0.7	43
46	Hydrologic responses to earthquakes and a general metric. Geofluids, 2010, 10, 206-216.	0.7	110
47	Groundwater Level Change. Lecture Notes in Earth Sciences, 2010, , 67-95.	0.5	5
48	Liquefaction. Lecture Notes in Earth Sciences, 2010, , 7-31.	0.5	0
49	Rising springs along the Silk Road. Geology, 2009, 37, 243-246.	4.4	33
50	Effect of Poisson's ratio on stress state in the Wenchuan MS8.0 earthquake fault. Earthquake Science, 2009, 22, 603-607.	0.9	1
51	Role of S waves and Love waves in coseismic permeability enhancement. Geophysical Research Letters, 2009, 36, .	4.0	69
52	Earthquakes and Water. Lecture Notes in Earth Sciences, 2009, , .	0.5	69
53	Mechanism of water level changes during earthquakes: Near field versus intermediate field. Geophysical Research Letters, 2008, 35, .	4.0	101
54	Liquefaction beyond the Near Field. Seismological Research Letters, 2007, 78, 512-517.	1.9	141

CHI-YUEN WANG

#	Article	IF	CITATIONS
55	Field relations between the spectral composition of ground motion and hydrological effects during the 1999 Chiâ€Chi (Taiwan) earthquake. Journal of Geophysical Research, 2007, 112, .	3.3	28
56	Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophysical Research Letters, 2007, 34, .	4.0	130
57	Liquefaction Limit during Earthquakes and Underground Explosions: Implications on Ground-Motion Attenuation. Bulletin of the Seismological Society of America, 2006, 96, 355-363.	2.3	63
58	Can freezing cause floods on Mars?. Geophysical Research Letters, 2006, 33, .	4.0	20
59	Floods on Mars released from groundwater by impact. Icarus, 2005, 175, 551-555.	2.5	38
60	Some isotopic and hydrological changes associated with the 1999 Chi-Chi earthquake, Taiwan. Island Arc, 2005, 14, 37-54.	1.1	29
61	Temporal change in groundwater level following the 1999 (Mw = 7.5) Chi-Chi earthquake, Taiwan. Geofluids, 2004, 4, 210-220.	0.7	67
62	Streamflow increase due to rupturing of hydrothermal reservoirs: Evidence from the 2003 San Simeon, California, Earthquake. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	54
63	Coseismic release of water from mountains: Evidence from the 1999 (Mw = 7.5) Chi-Chi, Taiwan, earthquake. Geology, 2004, 32, 769.	4.4	145
64	Field relations among coseismic ground motion, water level change and liquefaction for the 1999 Chi-Chi (Mw= 7.5) earthquake, Taiwan. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	48
65	Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology, 2001, 29, 831.	4.4	131
66	Pore pressure generation in sedimentary basins: Overloading versus aquathermal. Journal of Geophysical Research, 1986, 91, 2153-2162.	3.3	158
67	Missing water from the Qiangtang Basin on the Tibetan Plateau. Geology, 0, , .	4.4	7