## Vinod M Menon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7049287/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics, 2015, 9, 30-34.                                                                                  | 31.4 | 865       |
| 2  | Topological Transitions in Metamaterials. Science, 2012, 336, 205-209.                                                                                                              | 12.6 | 734       |
| 3  | Visualization of exciton transport in ordered and disordered molecular solids. Nature<br>Communications, 2014, 5, 3646.                                                             | 12.8 | 270       |
| 4  | Optical control of room-temperature valley polaritons. Nature Photonics, 2017, 11, 491-496.                                                                                         | 31.4 | 165       |
| 5  | Theory for polariton-assisted remote energy transfer. Chemical Science, 2018, 9, 6659-6669.                                                                                         | 7.4  | 158       |
| 6  | Photoinduced Modification of Single-Photon Emitters in Hexagonal Boron Nitride. ACS Photonics, 2016, 3, 2490-2496.                                                                  | 6.6  | 109       |
| 7  | A room-temperature polariton light-emitting diode based on monolayer WS2. Nature Nanotechnology,<br>2019, 14, 1024-1028.                                                            | 31.5 | 106       |
| 8  | Photoresponse of an Organic Semiconductor/Two-Dimensional Transition Metal Dichalcogenide<br>Heterojunction. Nano Letters, 2017, 17, 3176-3181.                                     | 9.1  | 97        |
| 9  | Interacting polariton fluids in a monolayer of tungsten disulfide. Nature Nanotechnology, 2018, 13,<br>906-909.                                                                     | 31.5 | 96        |
| 10 | Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon.<br>Applied Physics Letters, 2013, 103, .                                         | 3.3  | 72        |
| 11 | Control of Strong Light–Matter Interaction in Monolayer WS <sub>2</sub> through Electric Field<br>Gating. Nano Letters, 2018, 18, 6455-6460.                                        | 9.1  | 72        |
| 12 | Photonic hypercrystals for control of light–matter interactions. Proceedings of the National<br>Academy of Sciences of the United States of America, 2017, 114, 5125-5129.          | 7.1  | 69        |
| 13 | Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nature Photonics, 2009,<br>3, 662-666.                                                                 | 31.4 | 64        |
| 14 | Direct Observation of Gate-Tunable Dark Trions in Monolayer WSe <sub>2</sub> . Nano Letters, 2019, 19,<br>6886-6893.                                                                | 9.1  | 60        |
| 15 | Guiding of visible photons at the ångström thickness limit. Nature Nanotechnology, 2019, 14, 844-850.                                                                               | 31.5 | 58        |
| 16 | Ultralongâ€Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via<br>Coherent Excitonâ€Polariton Propagation. Advanced Materials, 2020, 32, e2002127. | 21.0 | 58        |
| 17 | Room Temperature Frenkel-Wannier-Mott Hybridization of Degenerate Excitons in a Strongly Coupled<br>Microcavity. Physical Review Letters, 2014, 112, 076401.                        | 7.8  | 56        |
| 18 | Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nature Communications, 2021, 12, 2269.                                                 | 12.8 | 55        |

VINOD M MENON

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic<br>metamaterial. Physical Review B, 2016, 93, .                                     | 3.2  | 50        |
| 20 | Lasing from InGaP quantum dots in a spin-coated flexible microcavity. Optics Express, 2008, 16, 19535.                                                                             | 3.4  | 48        |
| 21 | Polariton chemistry: Thinking inside the (photon) box. Proceedings of the National Academy of<br>Sciences of the United States of America, 2019, 116, 5214-5216.                   | 7.1  | 48        |
| 22 | Topological phonon-polariton funneling in midinfrared metasurfaces. Science, 2021, 374, 225-227.                                                                                   | 12.6 | 48        |
| 23 | Strong coupling and hybridization of Frenkel and Wannier-Mott excitons in an organic-inorganic optical microcavity. Physical Review B, 2006, 74, .                                 | 3.2  | 46        |
| 24 | All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides.<br>Nature Communications, 2021, 12, 3746.                                       | 12.8 | 44        |
| 25 | Towards polaritonic logic circuits. Nature Photonics, 2010, 4, 345-346.                                                                                                            | 31.4 | 43        |
| 26 | Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nature Communications, 2021, 12, 4425.                                | 12.8 | 42        |
| 27 | Long-Range Resonant Energy Transfer Using Optical Topological Transitions in Metamaterials. ACS Photonics, 2018, 5, 2737-2741.                                                     | 6.6  | 38        |
| 28 | Microcavity-coupled emitters in hexagonal boron nitride. Nanophotonics, 2020, 9, 2937-2944.                                                                                        | 6.0  | 37        |
| 29 | Quasi-1D exciton channels in strain-engineered 2D materials. Science Advances, 2021, 7, eabj3066.                                                                                  | 10.3 | 37        |
| 30 | Investigating the distance limit of a metal nanoparticle based spectroscopic ruler. Biomedical Optics Express, 2011, 2, 1727.                                                      | 2.9  | 35        |
| 31 | The Role of Long-Lived Excitons in the Dynamics of Strongly Coupled Molecular Polaritons. ACS Photonics, 2020, 7, 2292-2301.                                                       | 6.6  | 34        |
| 32 | Valley selective optical control of excitons in 2D semiconductors using a chiral metasurface<br>[Invited]. Optical Materials Express, 2019, 9, 536.                                | 3.0  | 33        |
| 33 | Dipole-Aligned Energy Transfer between Excitons in Two-Dimensional Transition Metal Dichalcogenide and Organic Semiconductor. ACS Photonics, 2018, 5, 100-104.                     | 6.6  | 29        |
| 34 | Organic photonic bandgap microcavities doped with semiconductor nanocrystals for<br>room-temperature on-demand single-photon sources. Journal of Modern Optics, 2009, 56, 167-174. | 1.3  | 28        |
| 35 | Enhanced nonlinear optical response of metal nanocomposite based photonic crystals. Applied Physics<br>Letters, 2012, 101, .                                                       | 3.3  | 24        |
| 36 | Damage-Free Atomic Layer Etch of WSe <sub>2</sub> : A Platform for Fabricating Clean<br>Two-Dimensional Devices. ACS Applied Materials & Interfaces, 2021, 13, 1930-1942.          | 8.0  | 24        |

VINOD M MENON

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Propagating Hybrid Tamm Exciton Polaritons in Organic Microcavity. Journal of Physical Chemistry C, 2019, 123, 26509-26515.                                             | 3.1  | 21        |
| 38 | Coupling of deterministically activated quantum emitters in hexagonal boron nitride to plasmonic surface lattice resonances. Nanophotonics, 2019, 8, 2057-2064.         | 6.0  | 18        |
| 39 | Molecular Emission near Metal Interfaces: The Polaritonic Regime. Journal of Physical Chemistry<br>Letters, 2018, 9, 6511-6516.                                         | 4.6  | 17        |
| 40 | Selective isomer emission via funneling of exciton polaritons. Science Advances, 2021, 7, eabj0997.                                                                     | 10.3 | 17        |
| 41 | Purcell Effect of Plasmonic Surface Lattice Resonances and Its Influence on Energy Transfer. ACS Photonics, 2021, 8, 2211-2219.                                         | 6.6  | 16        |
| 42 | Optical isolator based on chiral light-matter interactions in a ring resonator integrating a dichroic magneto-optical material. Applied Physics Letters, 2021, 118, .   | 3.3  | 13        |
| 43 | Optical analog of valley Hall effect of 2D excitons in hyperbolic metamaterial. Optica, 2021, 8, 50.                                                                    | 9.3  | 12        |
| 44 | Excitonic Lasing in Solution-Processed Subwavelength Nanosphere Assemblies. Nano Letters, 2016, 16, 2004-2010.                                                          | 9.1  | 11        |
| 45 | Modifying the Spectral Weights of Vibronic Transitions via Strong Coupling to Surface Plasmons. ACS<br>Photonics, 2020, 7, 43-48.                                       | 6.6  | 9         |
| 46 | Using Fourier-Plane Imaging Microscopy for Determining Transition-Dipole-Moment Orientations in<br>Organic Light-Emitting Devices. Physical Review Applied, 2020, 14, . | 3.8  | 9         |
| 47 | Ultrafast thermal modification of strong coupling in an organic microcavity. APL Photonics, 2021, 6, 016103.                                                            | 5.7  | 9         |
| 48 | Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angewandte Chemie -<br>International Edition, 2022, 61, .                                      | 13.8 | 8         |
| 49 | Lasing from 2D atomic crystals. Nature Materials, 2015, 14, 370-371.                                                                                                    | 27.5 | 7         |
| 50 | Chiral emission of electric dipoles coupled to optical hyperbolic materials. Physical Review B, 2019, 100, .                                                            | 3.2  | 7         |
| 51 | Thermalization of Fluorescent Protein Exciton–Polaritons at Room Temperature. Advanced Materials,<br>2022, 34, e2109107.                                                | 21.0 | 7         |
| 52 | Spontaneous emission dynamics of Eu3+ ions coupled to hyperbolic metamaterials. Applied Physics<br>Letters, 2021, 118, 011106.                                          | 3.3  | 6         |
| 53 | Control of Light-Matter Interaction in 2D Atomic Crystals Using Microcavities. IEEE Journal of Quantum Electronics, 2015, 51, 1-8.                                      | 1.9  | 5         |
| 54 | Relaxing Symmetry Rules for Nonlinear Optical Interactions in Van der Waals Materials via Strong<br>Light–Matter Coupling. ACS Photonics, 2022, 9, 503-510.             | 6.6  | 5         |

VINOD M MENON

0

| #  | Article                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Investigation of photon emitters in Ce-implanted hexagonal boron nitride. Optical Materials Express, 2021, 11, 3478.                | 3.0 | 3         |
| 56 | Resonant enhancement of magneto-optical polarization conversion in microdisk resonators. Applied Physics Letters, 2011, 99, 241107. | 3.3 | 2         |
| 57 | Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angewandte Chemie, 2022, 134, .                            | 2.0 | 2         |
| 58 | Photoluminescence modification in self-assembled fluorescent 3D photonic crystals. , 2010, , .                                      |     | 1         |
| 59 | Colloidal quantum dot based photonic devices. , 2011, , .                                                                           |     | 1         |
| 60 | Fluorescence Triggered by Radioactive β Decay in Optimized Hyperbolic Cavities. Physical Review Applied, 2020, 14, .                | 3.8 | 1         |
| 61 | Hybridization of Frenkel and Wannier-Mott excitons in an optical microcavity. , 2006, , .                                           |     | 0         |
| 62 | Spontaneous emission enhancement using hyperbolic metamaterials. , 2011, , .                                                        |     | 0         |
| 63 | Enhanced gain in colloidal quantum dots in all-dielectric microcavities. , 2012, , .                                                |     | Ο         |
| 64 | Optical topological transition in metamaterials: QED and related effects. , 2013, , .                                               |     | 0         |
| 65 | Light Emission from Atomic Monolayers in a One-Dimensional Microcavity. , 2014, , .                                                 |     | Ο         |
| 66 | Valley Selective Optical Emission of 2D Excitons using Chiral Metasurface. , 2018, , .                                              |     | 0         |
| 67 | Electrical Tuning of Exciton-Polaritons in Monolayer WS <inf>2</inf> . , 2018, , .                                                  |     | Ο         |
| 68 | Control of Light-Matter Interaction in 2D Materials. , 2019, , .                                                                    |     | 0         |
| 69 | Control of Light-Matter Interaction in two-Dimensional Materials. , 2019, , .                                                       |     | 0         |
|    |                                                                                                                                     |     |           |

70

Polariton electroluminescence in monolayer WS2., 2019,,.