
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7048976/publications.pdf Version: 2024-02-01

MACNUS FSSAND

#	Article	IF	CITATIONS
1	Targeting circulating monocytes with CCL2-loaded liposomes armed with an oncolytic adenovirus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102506.	3.3	11
2	CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation. Molecular Therapy - Nucleic Acids, 2022, 28, 450-461.	5.1	13
3	CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers. Nature Biomedical Engineering, 2022, 6, 830-841.	22.5	25
4	lxovex-1, a novel oncolytic E1B-mutated adenovirus. Cancer Gene Therapy, 2022, 29, 1628-1635.	4.6	3
5	Intratumoral administration of pro-inflammatory allogeneic dendritic cells improved the anti-tumor response of systemic anti-CTLA-4 treatment via unleashing a T cell-dependent response. Oncolmmunology, 2022, 11, .	4.6	5
6	Development of a New Hyaluronic Acid Based Redox-Responsive Nanohydrogel for the Encapsulation of Oncolytic Viruses for Cancer Immunotherapy. Nanomaterials, 2021, 11, 144.	4.1	23
7	Perivascular Macrophages Regulate Blood Flow Following Tissue Damage. Circulation Research, 2021, 128, 1694-1707.	4.5	13
8	IFN-I-tolerant oncolytic Semliki Forest virus in combination with anti-PD1 enhances T cell response against mouse glioma. Molecular Therapy - Oncolytics, 2021, 21, 37-46.	4.4	14
9	Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nature Communications, 2021, 12, 4127.	12.8	59
10	Tertiary Lymphoid Structures in the Central Nervous System: Implications for Glioblastoma. Frontiers in Immunology, 2021, 12, 724739.	4.8	11
11	TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment. Haematologica, 2020, 105, 1306-1316.	3.5	9
12	Tumor endothelial cell up-regulation of IDO1 is an immunosuppressive feed-back mechanism that reduces the response to CD40-stimulating immunotherapy. Oncolmmunology, 2020, 9, 1730538.	4.6	23
13	Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death and Disease, 2020, 11, 48.	6.3	103
14	Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson's disease brain. Journal of Neuroinflammation, 2020, 17, 119.	7.2	105
15	Virus-Based Immunotherapy of Glioblastoma. Cancers, 2019, 11, 186.	3.7	107
16	Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/mTOR Axis that Promotes Malignancy. Cell Stem Cell, 2019, 25, 855-870.e11.	11.1	38
17	LGR5 promotes tumorigenicity and invasion of glioblastoma stemâ€like cells and is a potential therapeutic target for a subset of glioblastoma patients. Journal of Pathology, 2019, 247, 228-240.	4.5	19
18	Multiple nuclear-replicating viruses require the stress-induced protein ZC3H11A for efficient growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, F3808-F3816.	7.1	35

#	Article	IF	CITATIONS
19	Cancer vaccine based on a combination of an infection-enhanced adenoviral vector and pro-inflammatory allogeneic DCs leads to sustained antigen-specific immune responses in three melanoma models. OncoImmunology, 2018, 7, e1397250.	4.6	19
20	Pro-inflammatory allogeneic DCs promote activation of bystander immune cells and thereby license antigen-specific T-cell responses. Oncolmmunology, 2018, 7, e1395126.	4.6	24
21	Leukocyte Differentiation by Histidine-Rich Glycoprotein/Stanniocalcin-2 Complex Regulates Murine Glioma Growth through Modulation of Antitumor Immunity. Molecular Cancer Therapeutics, 2018, 17, 1961-1972.	4.1	16
22	A Phase I/IIa Trial Using CD19-Targeted Third-Generation CAR T Cells for Lymphoma and Leukemia. Clinical Cancer Research, 2018, 24, 6185-6194.	7.0	177
23	CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. Journal of Clinical Investigation, 2018, 128, 3280-3297.	8.2	100
24	The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Seminars in Cancer Biology, 2017, 45, 23-35.	9.6	32
25	Oncolytic alphavirus SFV-VA7 efficiently eradicates subcutaneous and orthotopic human prostate tumours in mice. British Journal of Cancer, 2017, 117, 51-55.	6.4	13
26	Preclinical Evaluation of AdVince, an Oncolytic Adenovirus Adapted for Treatment of Liver Metastases from Neuroendocrine Cancer. Neuroendocrinology, 2017, 105, 54-66.	2.5	24
27	Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clinical Cancer Research, 2017, 23, 1519-1530.	7.0	43
28	PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Research, 2017, 45, 2408-2422.	14.5	27
29	Safe engineering of <scp>CAR</scp> T cells for adoptive cell therapy of cancer using longâ€ŧerm episomal geneÂtransfer. EMBO Molecular Medicine, 2016, 8, 702-711.	6.9	56
30	Prospects to improve chimeric antigen receptor T-cell therapy for solid tumors. Immunotherapy, 2016, 8, 1355-1361.	2.0	15
31	Heparanase Promotes Clioma Progression and Is Inversely Correlated with Patient Survival. Molecular Cancer Research, 2016, 14, 1243-1253.	3.4	62
32	Avidity characterization of genetically engineered T-cells with novel and established approaches. BMC Immunology, 2016, 17, 23.	2.2	15
33	HAdV-2-suppressed growth of SV40 T antigen-transformed mouse mammary epithelial cell-induced tumours in SCID mice. Virology, 2016, 489, 44-50.	2.4	Ο
34	Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas. Science Signaling, 2015, 8, ra125.	3.6	52
35	Chimeric Antigen Receptor-Engineered T Cells for the Treatment of Metastatic Prostate Cancer. BioDrugs, 2015, 29, 75-89.	4.6	57
36	Elevated Expression of the C-Type Lectin CD93 in the Glioblastoma Vasculature Regulates Cytoskeletal Rearrangements That Enhance Vessel Function and Reduce Host Survival. Cancer Research, 2015, 75, 4504-4516.	0.9	59

#	Article	IF	CITATIONS
37	Other Novel Therapies: Biomarkers, microRNAs and microRNA Inhibitors, DNA Methylation, Epigenetics, Immunotherapy and Virotherapy. Frontiers of Hormone Research, 2015, 44, 248-262.	1.0	1
38	Third Generation CD19-CAR T Cells for Relapsed and Refractory Lymphoma and Leukemia Report from the Swedish Phase I/IIa Trial. Blood, 2015, 126, 1534-1534.	1.4	9
39	A Hexon and Fiber-modified Adenovirus Expressing CD40L Improves the Antigen Presentation Capacity of Dendritic Cells. Journal of Immunotherapy, 2014, 37, 155-162.	2.4	3
40	Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice. BMC Cancer, 2014, 14, 30.	2.6	49
41	Vector-EncodedHelicobacter pyloriNeutrophil-Activating Protein Promotes Maturation of Dendritic Cells with Th1 Polarization and Improved Migration. Journal of Immunology, 2014, 193, 2287-2296.	0.8	32
42	Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14001.	4.1	27
43	Tat-PTD-Modified Oncolytic Adenovirus Driven by the SCG3 Promoter and ASH1 Enhancer for Neuroblastoma Therapy. Human Gene Therapy, 2013, 24, 766-775.	2.7	8
44	An Infection-enhanced Oncolytic Adenovirus Secreting H. pylori Neutrophil-activating Protein with Therapeutic Effects on Neuroendocrine Tumors. Molecular Therapy, 2013, 21, 2008-2018.	8.2	29
45	Virotherapy of Neuroendocrine Tumors. Neuroendocrinology, 2013, 97, 26-34.	2.5	11
46	Islet Engraftment and Revascularization in Clinical and Experimental Transplantation. Cell Transplantation, 2013, 22, 243-251.	2.5	18
47	Adenovirus Serotype 5 Vectors with Tat-PTD Modified Hexon and Serotype 35 Fiber Show Greatly Enhanced Transduction Capacity of Primary Cell Cultures. PLoS ONE, 2013, 8, e54952.	2.5	25
48	T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2 ⁺ prostate and breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15877-15881.	7.1	27
49	Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors. Cancer Research, 2011, 71, 1805-1815.	0.9	111
50	Adenovirus with Hexon Tat-Protein Transduction Domain Modification Exhibits Increased Therapeutic Effect in Experimental Neuroblastoma and Neuroendocrine Tumors. Journal of Virology, 2011, 85, 13114-13123.	3.4	34
51	Double-Detargeted Oncolytic Adenovirus Shows Replication Arrest in Liver Cells and Retains Neuroendocrine Cell Killing Ability. PLoS ONE, 2010, 5, e8916.	2.5	43
52	High frequency of prostate antigenâ€directed T cells in cancer patients compared to healthy ageâ€matched individuals. Prostate, 2009, 69, 70-81.	2.3	9
53	Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Modern Pathology, 2009, 22, 261-272.	5.5	131
54	Strategic use of an adenoviral vector for rapid and efficient ex vivo-generation of cytomegalovirus pp65-reactive cytolytic and helper TÂcells. British Journal of Haematology, 2008, 141, 188-199.	2.5	3

#	Article	IF	CITATIONS
55	A Novel Chromogranin-A Promoter-Driven Oncolytic Adenovirus for Midgut Carcinoid Therapy. Clinical Cancer Research, 2007, 13, 2455-2462.	7.0	37
56	Gene therapy and immunotherapy of prostate cancer: Adenoviral-based strategies. Acta Oncológica, 2005, 44, 610-627.	1.8	13
57	Gene expression in midgut carcinoid tumors: Potential targets for immunotherapy. Acta Oncológica, 2005, 44, 32-40.	1.8	26
58	Generation of cytotoxic T lymphocytes specific for the prostate and breast tissue antigen TARP. Prostate, 2004, 61, 161-170.	2.3	32
59	Ex vivo stimulation of cytomegalovirus (CMV)-specific T cells using CMV pp65-modified dendritic cells as stimulators. British Journal of Haematology, 2003, 121, 428-438.	2.5	36