List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7048234/publications.pdf Version: 2024-02-01

		8755	10158
271	22,456	75	140
papers	citations	h-index	g-index
291	291	291	26198
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Measuring and Modelling the Epithelial- Mesenchymal Hybrid State in Cancer: Clinical Implications. Cells Tissues Organs, 2022, 211, 110-133.	2.3	28
2	EMT process in bone metastasis. , 2022, , 359-370.		1
3	Histone lactylation: epigenetic mark of glycolytic switch. Trends in Genetics, 2022, 38, 124-127.	6.7	40
4	In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends in Food Science and Technology, 2022, 120, 59-74.	15.1	24
5	Neuropilin-1 is over-expressed in claudin-low breast cancer and promotes tumor progression through acquisition of stem cell characteristics and RAS/MAPK pathway activation. Breast Cancer Research, 2022, 24, 8.	5.0	10
6	Lysine Acetylation, Cancer Hallmarks and Emerging Onco-Therapeutic Opportunities. Cancers, 2022, 14, 346.	3.7	15
7	Pan-cancer quantitation of epithelial-mesenchymal transition dynamics using parallel reaction monitoring-based targeted proteomics approach. Journal of Translational Medicine, 2022, 20, 84.	4.4	3
8	Population Dynamics of Epithelial-Mesenchymal Heterogeneity in Cancer Cells. Biomolecules, 2022, 12, 348.	4.0	12
9	Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Frontiers in Cell and Developmental Biology, 2022, 10, 858013.	3.7	2
10	Portable NMR for quantification of breast density in vivo: Proof-of-concept measurements and comparison with quantitative MRI. Magnetic Resonance Imaging, 2022, 92, 212-223.	1.8	2
11	Pubertal mammary gland development is a key determinant of adult mammographic density. Seminars in Cell and Developmental Biology, 2021, 114, 143-158.	5.0	17
12	The role of mechanical interactions in EMT. Physical Biology, 2021, 18, 046001.	1.8	9
13	Diversity of Epithelial-Mesenchymal Phenotypes in Circulating Tumour Cells from Prostate Cancer Patient-Derived Xenograft Models. Cancers, 2021, 13, 2750.	3.7	20
14	Epithelial-to-Mesenchymal Transition Enhances Cancer Cell Sensitivity to Cytotoxic Effects of Cold Atmospheric Plasmas in Breast and Bladder Cancer Systems. Cancers, 2021, 13, 2889.	3.7	35
15	RASSF1A Suppression as a Potential Regulator of Mechano-Pathobiology Associated with Mammographic Density in BRCA Mutation Carriers. Cancers, 2021, 13, 3251.	3.7	1
16	Twenty years on for The Epithelial-Mesenchymal Transition International Association (TEMTIA): an interview with co-founders Erik Thompson and Donald Newgreen. Cells Tissues Organs, 2021, , .	2.3	0
17	Partial Epithelialâ€Mesenchymal Transition: Reduced miRâ€4792 and miRâ€146bâ€5p Inversely Correlated with SIAH2 in Migrating Keratinocytes <i>in Vitro</i> . Experimental Dermatology, 2021, 30, 1838-1839.	2.9	0
18	Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle?. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 277-296.	2.7	2

#	Article	IF	CITATIONS
19	Studying the Metabolism of Epithelial-Mesenchymal Plasticity Using the Seahorse XFe96 Extracellular Flux Analyzer. Methods in Molecular Biology, 2021, 2179, 327-340.	0.9	7
20	Differential engagement of ORAI1 and TRPC1 in the induction of vimentin expression by different stimuli. Laboratory Investigation, 2020, 100, 224-233.	3.7	7
21	Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers, 2020, 12, 3360.	3.7	50
22	Integrin alpha-2 and beta-1 expression increases through multiple generations of the EDW01 patient-derived xenograft model of breast cancer—insight into their role in epithelial mesenchymal transition in vivo gained from an in vitro model system. Breast Cancer Research, 2020, 22, 136.	5.0	16
23	Heparanase Promotes Syndecan-1 Expression to Mediate Fibrillar Collagen and Mammographic Density in Human Breast Tissue Cultured ex vivo. Frontiers in Cell and Developmental Biology, 2020, 8, 599.	3.7	14
24	Activation of the Ion Channel TRPV4 Induces Epithelial to Mesenchymal Transition in Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 9417.	4.1	21
25	New Insights Into the Role of Phenotypic Plasticity and EMT in Driving Cancer Progression. Frontiers in Molecular Biosciences, 2020, 7, 71.	3.5	71
26	Identifying Therapies to Combat Epithelial Mesenchymal Plasticity-Associated Chemoresistance to Conventional Breast Cancer Therapies Using An shRNA Library Screen. Cancers, 2020, 12, 1123.	3.7	7
27	Innovative Precision Geneâ€Editing Tools in Personalized Cancer Medicine. Advanced Science, 2020, 7, 1902552.	11.2	9
28	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
29	Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. Advances in Experimental Medicine and Biology, 2020, 1220, 11-34.	1.6	12
30	Multi-Omics Characterization of the Spontaneous Mesenchymal–Epithelial Transition in the PMC42 Breast Cancer Cell Lines. Journal of Clinical Medicine, 2019, 8, 1253.	2.4	24
31	Interrogation of Phenotypic Plasticity between Epithelial and Mesenchymal States in Breast Cancer. Journal of Clinical Medicine, 2019, 8, 893.	2.4	45
32	Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nature Reviews Cancer, 2019, 19, 716-732.	28.4	294
33	Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers, 2019, 11, 1745.	3.7	6
34	Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. Nanoscale, 2019, 11, 19497-19505.	5.6	22
35	Quantification of breast tissue density: Correlation between single-sided portable NMR and micro-CT measurements. Magnetic Resonance Imaging, 2019, 62, 111-120.	1.8	12
36	A review of the influence of mammographic density on breast cancer clinical and pathological phenotype. Breast Cancer Research and Treatment, 2019, 177, 251-276.	2.5	35

#	Article	IF	CITATIONS
37	Circulating Tumor Cell cluster phenotype allows monitoring response to treatment and predicts survival. Scientific Reports, 2019, 9, 7933.	3.3	49
38	Human-specific RNA analysis shows uncoupled epithelial-mesenchymal plasticity in circulating and disseminated tumour cells from human breast cancer xenografts. Clinical and Experimental Metastasis, 2019, 36, 393-409.	3.3	13
39	Transverse relaxationâ€based assessment of mammographic density and breast tissue composition by singleâ€sided portable NMR. Magnetic Resonance in Medicine, 2019, 82, 1199-1213.	3.0	21
40	ORAI1 and ORAI3 in Breast Cancer Molecular Subtypes and the Identification of ORAI3 as a Hypoxia Sensitive Gene and a Regulator of Hypoxia Responses. Cancers, 2019, 11, 208.	3.7	47
41	Hypoxia as a signal for prison breakout in cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 250-263.	2.5	8
42	T ₁ â€based sensing of mammographic density using singleâ€sided portable <scp>NMR</scp> . Magnetic Resonance in Medicine, 2018, 80, 1243-1251.	3.0	25
43	Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene, 2018, 37, 4214-4225.	5.9	100
44	Looking beyond the mammogram to assess mammographic density: A narrative review. Biomedical Spectroscopy and Imaging, 2018, 7, 63-80.	1.2	4
45	Assessment of CXC ligand 12-mediated calcium signalling and its regulators in basal-like breast cancer cells. Oncology Letters, 2018, 15, 4289-4295.	1.8	6
46	Epithelial–mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Developmental Dynamics, 2018, 247, 432-450.	1.8	87
47	The prognostic significance of circulating tumor cells in head and neck and nonâ€small ell lung cancer. Cancer Medicine, 2018, 7, 5910-5919.	2.8	91
48	InforMD: a new initiative to raise public awareness about breast density. Ecancermedicalscience, 2018, 12, 807.	1.1	4
49	DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum—Implications for the Choice of Circulating Tumour DNA Methylation Markers. International Journal of Molecular Sciences, 2018, 19, 2553.	4.1	15
50	Transition states that allow cancer to spread. Nature, 2018, 556, 442-444.	27.8	34
51	The Emerging Role of Gas Plasma in Oncotherapy. Trends in Biotechnology, 2018, 36, 1183-1198.	9.3	89
52	High mammographic density in women is associated with protumor inflammation. Breast Cancer Research, 2018, 20, 92.	5.0	26
53	The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clinical and Experimental Metastasis, 2018, 35, 285-308.	3.3	47
54	CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model. Breast Cancer Research, 2017, 19, 4.	5.0	61

#	Article	IF	CITATIONS
55	A Transcriptional Program for Detecting TGFβ-Induced EMT in Cancer. Molecular Cancer Research, 2017, 15, 619-631.	3.4	63
56	Enrichment of circulating head and neck tumour cells using spiral microfluidic technology. Scientific Reports, 2017, 7, 42517.	3.3	69
57	TRPC1 is a differential regulator of hypoxia-mediated events and Akt signaling in PTEN-deficient breast cancer cells. Journal of Cell Science, 2017, 130, 2292-2305.	2.0	69
58	MicroRNAs in HPV associated cancers: small players with big consequences. Expert Review of Molecular Diagnostics, 2017, 17, 711-722.	3.1	28
59	A fence barrier method of leading edge cell capture for explorative biochemical research. Cell Adhesion and Migration, 2017, 11, 496-503.	2.7	2
60	Targeting epithelial–mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochemical Journal, 2017, 474, 3269-3306.	3.7	53
61	Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expression, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Scientific Reports, 2017, 7, 15140.	3.3	99
62	Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin. Breast Cancer Research, 2017, 19, 86.	5.0	44
63	Mammographic density: a potential monitoring biomarker for adjuvant and preventative breast cancer endocrine therapies. Oncotarget, 2017, 8, 5578-5591.	1.8	39
64	An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas. Journal of Pathology, 2016, 238, 489-494.	4.5	32
65	Differential effects of two-pore channel protein 1 and 2 silencing in MDA-MB-468 breast cancer cells. Biochemical and Biophysical Research Communications, 2016, 477, 731-736.	2.1	22
66	Tissue Factor Induced by Epithelial–Mesenchymal Transition Triggers a Procoagulant State That Drives Metastasis of Circulating Tumor Cells. Cancer Research, 2016, 76, 4270-4282.	0.9	81
67	Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells. Clinical and Experimental Metastasis, 2016, 33, 521-550.	3.3	30
68	Janus kinases and Src family kinases in the regulation of EGF-induced vimentin expression in MDA-MB-468 breast cancer cells. International Journal of Biochemistry and Cell Biology, 2016, 76, 64-74.	2.8	8
69	Human glandular organoid formation in murine engineering chambers after collagenase digestion and flow cytometry isolation of normal human breast tissue single cells. Cell Biology International, 2016, 40, 1212-1223.	3.0	5
70	Mammographically dense human breast tissue stimulates MCF10DCIS.com progression to invasive lesions and metastasis. Breast Cancer Research, 2016, 18, 106.	5.0	13
71	Altered purinergic receptor a ²⁺ signaling associated with hypoxiaâ€induced epithelialâ€mesenchymal transition in breast cancer cells. Molecular Oncology, 2016, 10, 166-178.	4.6	77
72	Abstract P1-05-03: Predictive value of de novo and induced epithelial-mesenchymal transition in locally		1

advanced breast cancer treated with neoadjuvant chemotherapy., 2016, , .

#	Article	IF	CITATIONS
73	Short term <i>ex-vivo</i> expansion of circulating head and neck tumour cells. Oncotarget, 2016, 7, 60101-60109.	1.8	48
74	Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer. Oncotarget, 2016, 7, 61000-61020.	1.8	10
75	An optimised direct lysis method for gene expression studies on low cell numbers. Scientific Reports, 2015, 5, 12859.	3.3	25
76	Heterogeneity of miR-10b expression in circulating tumor cells. Scientific Reports, 2015, 5, 15980.	3.3	33
77	High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Research, 2015, 17, 79.	5.0	134
78	Exemplary multiplex bisulfite amplicon data used to demonstrate the utility of Methpat. GigaScience, 2015, 4, 55.	6.4	3
79	Editorial: Cellular and Phenotypic Plasticity in Cancer. Frontiers in Oncology, 2015, 5, 171.	2.8	15
80	EMT process in bone metastasis. , 2015, , 451-459.		1
81	Clinical Implications of Circulating Tumor Cells of Breast Cancer Patients: Role of EpithelialĀ¢â,¬â€œMesenchymal Plasticity. Frontiers in Oncology, 2015, 5, 42.	2.8	61
82	New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 109-119.	2.7	83
83	A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial–mesenchymal transition. Biochemical and Biophysical Research Communications, 2015, 458, 509-514.	2.1	31
84	Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines. Cell Communication and Signaling, 2015, 13, 26.	6.5	47
85	Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells. Breast Cancer Research and Treatment, 2015, 150, 523-534.	2.5	25
86	Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density. Breast Cancer Research and Treatment, 2015, 153, 89-99.	2.5	16
87	Proteoglycans: Potential Agents in Mammographic Density and the Associated Breast Cancer Risk. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 121-131.	2.7	21
88	Abstract P2-07-05: A potential role for Janus protein tyrosine kinases in the regulation of epithelial-mesenchymal transition in a model of epidermal growth factor induced breast cancer epithelial-mesenchymal transition. , 2015, , .		1
89	The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer. Oncotarget, 2015, 6, 862-873.	1.8	53
90	Targeted Disruption of the JAK2/STAT3 Pathway in Combination with Systemic Administration of Paclitaxel Inhibits the Priming of Ovarian Cancer Stem Cells Leading to a Reduced Tumor Burden. Frontiers in Oncology, 2014, 4, 75.	2.8	62

#	Article	IF	CITATIONS
91	Effects of Tamoxifen and oestrogen on histology and radiographic density in high and low mammographic density human breast tissues maintained in murine tissue engineering chambers. Breast Cancer Research and Treatment, 2014, 148, 303-314.	2.5	20
92	High threshold of β1 integrin inhibition required to block collagen I-induced membrane type-1 matrix metalloproteinase (MT1-MMP) activation of matrix metalloproteinase 2 (MMP-2). Cancer Cell International, 2014, 14, 99.	4.1	12
93	Targeting EMT in cancer: opportunities for pharmacological intervention. Trends in Pharmacological Sciences, 2014, 35, 479-488.	8.7	276
94	Mammographic density—a review on the current understanding of its association with breast cancer. Breast Cancer Research and Treatment, 2014, 144, 479-502.	2.5	169
95	Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer, 2014, 14, 317.	2.6	105
96	Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene, 2014, 33, 2307-2316.	5.9	290
97	Abstract 4282: High content multiparametric functional screen for regulators of epithelial-mesenchymal transition identifies genes associated with chemoresistance. , 2014, , .		0
98	Abstract 1060: Integrated target discovery in the EMPathy Breast Cancer Network - Multidimensional analysis of epithelial mesenchymal plasticity (EMP) in experimental systems. , 2014, , .		0
99	Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells. Dental Traumatology, 2013, 29, 84-91.	2.0	29
100	COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration. Breast Cancer Research, 2013, 15, 402.	5.0	36
101	Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular Cancer, 2013, 12, 24.	19.2	179
102	Progress in Epithelial-Mesenchymal Transition Research. Cells Tissues Organs, 2013, 197, 421-423.	2.3	0
103	Breast cancer stem cells and epithelial mesenchymal plasticity – Implications for chemoresistance. Cancer Letters, 2013, 341, 56-62.	7.2	108
104	Molecular Profiling of Human Mammary Gland Links Breast Cancer Risk to a p27+ Cell Population with Progenitor Characteristics. Cell Stem Cell, 2013, 13, 117-130.	11.1	72
105	Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell International, 2013, 13, 76.	4.1	53
106	Dynamic changes in high and low mammographic density human breast tissues maintained in murine tissue engineering chambers during various murine peripartum states and over time. Breast Cancer Research and Treatment, 2013, 140, 285-297.	2.5	13
107	Treatment with the vascular disruptive agent OXi4503 induces an immediate and widespread epithelial to mesenchymal transition in the surviving tumor. Cancer Medicine, 2013, 2, 595-610.	2.8	13
100	The to and free of turnour approad Nature 2012 402 487 488	05.0	07

27.8 87

#	Article	IF	CITATIONS
109	Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Laboratory Investigation, 2013, 93, 434-449.	3.7	130
110	An Adipoinductive Role of Inflammation in Adipose Tissue Engineering: Key Factors in the Early Development of Engineered Soft Tissues. Stem Cells and Development, 2013, 22, 1602-1613.	2.1	51
111	Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Research, 2013, 15, R113.	5.0	63
112	Determining epithelial contribution to <i>in vivo</i> mesenchymal tumour expression signature using species-specific microarray profiling analysis of xenografts. Genetical Research, 2013, 95, 14-29.	0.9	2
113	Abstract B093: Discovery of microRNAs associated with breast cancer EMT using bioinformatics and next-generation sequencing. , 2013, , .		0
114	High and low mammographic density human breast tissues maintain histological differential in murine tissue engineering chambers. Breast Cancer Research and Treatment, 2012, 135, 177-187.	2.5	13
115	A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene, 2012, 31, 3741-3753.	5.9	170
116	Survival of rat functional dental pulp cells in vascularized tissue engineering chambers. Tissue and Cell, 2012, 44, 111-121.	2.2	17
117	Regulation of ROCK1 via Notch1 during breast cancer cell migration into dense matrices. BMC Cell Biology, 2012, 13, 12.	3.0	25
118	Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer and Metastasis Reviews, 2012, 31, 469-478.	5.9	285
119	An MMP13-Selective Inhibitor Delays Primary Tumor Growth and the Onset of Tumor-Associated Osteolytic Lesions in Experimental Models of Breast Cancer. PLoS ONE, 2012, 7, e29615.	2.5	44
120	Isolation and Characterization of Tumor Cells from the Ascites of Ovarian Cancer Patients: Molecular Phenotype of Chemoresistant Ovarian Tumors. PLoS ONE, 2012, 7, e46858.	2.5	188
121	Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Molecular Medicine, 2012, 4, 675-684.	6.9	223
122	Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment. Cancer Microenvironment, 2012, 5, 83-93.	3.1	59
123	Soiling the Seed: Microenvironment and Epithelial Mesenchymal Plasticity. Cancer Microenvironment, 2012, 5, 1-3.	3.1	8
124	Dormant but migratory tumour cells in desmoplastic stroma of invasive ductal carcinomas. Clinical and Experimental Metastasis, 2012, 29, 273-292.	3.3	20
125	Abstract 2977: Epithelial mesenchymal plasticity in xenograft models of circulating and disseminated tumour cells from human breast cancer. , 2012, , .		0
126	Defining the E-Cadherin Repressor Interactome in Epithelial-Mesenchymal Transition: The PMC42 Model as a Case Study. Cells Tissues Organs, 2011, 193, 23-40.	2.3	72

ERIK WALTER THOMPSON

#	Article	IF	CITATIONS
127	The social aspects of EMT-MET plasticity. Nature Medicine, 2011, 17, 1048-1049.	30.7	71
128	Long-Term Stability of Adipose Tissue Generated from a Vascularized Pedicled Fat Flap inside a Chamber. Plastic and Reconstructive Surgery, 2011, 127, 2283-2292.	1.4	78
129	Image-guided sampling reveals increased stroma and lower glandular complexity in mammographically dense breast tissue. Breast Cancer Research and Treatment, 2011, 128, 505-516.	2.5	52
130	Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. Journal of Cellular Biochemistry, 2011, 112, 2850-2864.	2.6	202
131	Out of the Desert: The 4th TEMTIA Meeting on New Advances in Development, Fibrosis and Cancer. Cells Tissues Organs, 2011, 193, 4-7.	2.3	1
132	Remodeling of Purinergic Receptor-Mediated Ca2+ Signaling as a Consequence of EGF-Induced Epithelial-Mesenchymal Transition in Breast Cancer Cells. PLoS ONE, 2011, 6, e23464.	2.5	52
133	Abstract 3428: Coordinated regulation of mesenchymal epithelial transition in the PMC42-LA breast cancer cell line variant. , 2011, , .		0
134	Intrinsics and Dynamics of Fat Grafts: An In Vitro Study. Plastic and Reconstructive Surgery, 2010, 126, 1155-1162.	1.4	20
135	Epithelial-to-Mesenchymal Transitions and Circulating Tumor Cells. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 261-273.	2.7	201
136	Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem Cell Phenotype in Human Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 235-252.	2.7	252
137	Mammary Gland Studies as Important Contributors to the Cause of Epithelial Mesenchymal Plasticity in Malignancy. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 113-115.	2.7	6
138	Cadherins in the human placenta – epithelial–mesenchymal transition (EMT) and placental development. Placenta, 2010, 31, 747-755.	1.5	168
139	Multiplexed tandem polymerase chain reaction identifies strong expression of oestrogen receptor and Her-2 from single, formalin-fixed, paraffin-embedded breast cancer sections. Pathology, 2010, 42, 165-172.	0.6	1
140	The orphan nuclear receptor LRH-1 promotes breast cancer motility and invasion. Endocrine-Related Cancer, 2010, 17, 965-975.	3.1	86
141	Reversible transdifferentiation of blood vascular endothelial cells to a lymphatic-like phenotype in vitro. Journal of Cell Science, 2010, 123, 3808-3816.	2.0	44
142	Disparate Companions: Tissue Engineering Meets Cancer Research. Cells Tissues Organs, 2010, 192, 141-157.	2.3	6
143	Reversible transdifferentiation of blood vascular endothelial cells to a lymphatic-like phenotype in vitro. Development (Cambridge), 2010, 137, e2208-e2208.	2.5	0
144	Endothelial Precursor Cells Home to a Vascularized Tissue Engineering Chamber by Application of the Angiogenic Chemokine CXCL12. Tissue Engineering - Part A, 2009, 15, 655-664.	3.1	25

#	Article	IF	CITATIONS
145	Preclinical Drug Development Must Consider the Impact on Metastasis. Clinical Cancer Research, 2009, 15, 4529-4530.	7.0	34
146	Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation. BMC Cancer, 2009, 9, 235.	2.6	25
147	Matrix metalloproteinase 13–deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis and Rheumatism, 2009, 60, 3723-3733.	6.7	655
148	Myogel supports the ex-vivo amplification of corneal epithelial cells. Experimental Eye Research, 2009, 88, 339-346.	2.6	31
149	Epithelial to mesenchymal transition and breast cancer. Breast Cancer Research, 2009, 11, 213.	5.0	253
150	Long-Term Persistence of Tissue-Engineered Adipose Flaps in a Murine Model to 1 Year: An Update. Plastic and Reconstructive Surgery, 2009, 124, 1077-1084.	1.4	30
151	Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical and Experimental Metastasis, 2008, 25, 629-642.	3.3	283
152	EMT and MET in carcinoma—clinical observations, regulatory pathways and new models. Clinical and Experimental Metastasis, 2008, 25, 591-592.	3.3	58
153	The role of biological extracellular matrix scaffolds in vascularized three-dimensional tissue growthin vivo. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 300-300.	3.4	0
154	Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials, 2008, 29, 573-579.	11.4	102
155	Myogel, a Novel, Basement Membrane-Rich, Extracellular Matrix Derived from Skeletal Muscle, Is Highly Adipogenic in vivo and in vitro. Cells Tissues Organs, 2008, 188, 347-358.	2.3	58
156	Zymosan-induced inflammation stimulates neo-adipogenesis. International Journal of Obesity, 2008, 32, 239-248.	3.4	55
157	An endogenously deposited fibrin scaffold determines construct size in the surgically created arteriovenous loop chamber model of tissue engineering. Journal of Vascular Surgery, 2008, 48, 974-985.	1.1	22
158	Activation of Matrix Metalloproteinase-2 (MMP-2) by Membrane Type 1 Matrix Metalloproteinase through an Artificial Receptor for ProMMP-2 Generates Active MMP-2. Cancer Research, 2008, 68, 9096-9104.	0.9	72
159	Host Rather than Graft Origin of Matrigel-Induced Adipose Tissue in the Murine Tissue-Engineering Chamber. Tissue Engineering, 2007, 13, 2291-2300.	4.6	95
160	Spontaneous Large Volume Adipose Tissue Generation from a Vascularized Pedicled Fat Flap Inside a Chamber Space. Tissue Engineering, 2007, 13, 673-681.	4.6	96
161	An arteriovenous loop in a protected space generates a permanent, highly vascular, tissueâ€engineered construct. FASEB Journal, 2007, 21, 511-522.	0.5	167
162	The type I collagen induction of MT1-MMP-mediated MMP-2 activation is repressed by αVβ3 integrin in human breast cancer cells. Matrix Biology, 2007, 26, 291-305.	3.6	28

#	Article	IF	CITATIONS
163	Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Research, 2007, 9, R19.	5.0	80
164	Vimentin and Epithelial-Mesenchymal Transition in Human Breast Cancer – Observations in vitro and in vivo. Cells Tissues Organs, 2007, 185, 191-203.	2.3	329
165	Mesenchymal to Epithelial Transition in Development and Disease. Cells Tissues Organs, 2007, 185, 7-19.	2.3	276
166	Neutrophil gelatinaseâ€associated lipocalin (NGAL) an earlyâ€screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factorâ€induced epithelioâ€mesenchymal transition. International Journal of Cancer, 2007, 120, 2426-2434.	5.1	151
167	The role of biological extracellular matrix scaffolds in vascularized three-dimensional tissue growthin vivo. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 122-128.	3.4	16
168	Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 2007, 213, 374-383.	4.1	957
169	Epithelial–mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: An exception to the norm. Journal of Cellular Physiology, 2007, 213, 581-588.	4.1	208
170	Monocyte Chemoattractant Proteinâ€1 and Nitric Oxide Promote Adipogenesis in a Model That Mimics Obesity. Obesity, 2007, 15, 2951-2957.	3.0	54
171	Aberrant fibroblast growth factor receptor signaling in bladder and other cancers. Differentiation, 2007, 75, 831-842.	1.9	69
172	Substrate choice of membrane-type 1 matrix metalloproteinase is dictated by tissue inhibitor of metalloproteinase-2 levels. Cancer Science, 2007, 98, 563-568.	3.9	31
173	Mesenchymal-to-Epithelial Transition Facilitates Bladder Cancer Metastasis: Role of Fibroblast Growth Factor Receptor-2. Cancer Research, 2006, 66, 11271-11278.	0.9	404
174	50 POSTER Inhibition of Src kinase with the dual Src/Abl kinase inhibitor AZD0503 reduces bladder tumour growth and the development of mixed osteolytic/osteosclerotic lesions in bone. European Journal of Cancer, Supplement, 2006, 4, 19.	2.2	0
175	MYOEPITHELIAL MOLECULAR MARKERS IN HUMAN BREAST CARCINOMA PMC42-LA CELLS ARE INDUCED BY EXTRACELLULAR MATRIX AND STROMAL CELLS. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 298-307.	1.5	7
176	Adipose Tissue Engineering Based on the Controlled Release of Fibroblast Growth Factor-2 in a Collagen Matrix. Tissue Engineering, 2006, 12, 3035-3043.	4.6	96
177	A Collagen Prolyl 4-hydroxylase Inhibitor Reduces Adhesions after Tendon Injury. Clinical Orthopaedics and Related Research, 2006, 451, 251-256.	1.5	13
178	Time course analysis of hypoxia, granulation tissue and blood vessel growth, and remodeling in healing rat cutaneous incisional primary intention wounds. Wound Repair and Regeneration, 2006, 14, 277-288.	3.0	46
179	Molecular aspects of tissue engineering in the dental field. Periodontology 2000, 2006, 41, 88-108.	13.4	34
180	ST7-mediated suppression of tumorigenicity of prostate cancer cells is characterized by remodeling of the extracellular matrix. Oncogene, 2006, 25, 3924-3933.	5.9	22

#	Article	IF	CITATIONS
181	The epithelial–mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 2006, 172, 973-981.	5.2	1,819
182	The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials, 2006, 27, 2854-2864.	11.4	130
183	In vitro and in vivo MMP gene expression localisation by In Situ-RT-PCR in cell culture and paraffin embedded human breast cancer cell line xenografts. BMC Cancer, 2006, 6, 18.	2.6	14
184	PPARÎ ³ -independent induction of growth arrest and apoptosis in prostate and bladder carcinoma. BMC Cancer, 2006, 6, 53.	2.6	83
185	Contact with Existing Adipose Tissue Is Inductive for Adipogenesis in Matrigel. Tissue Engineering, 2006, 12, 2041-2047.	4.6	75
186	Type I Collagen Abrogates the Clathrin-mediated Internalization of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) via the MT1-MMP Hemopexin Domain. Journal of Biological Chemistry, 2006, 281, 6826-6840.	3.4	46
187	Adipose Tissue Induction In Vivo. , 2006, 585, 403-412.		14
188	Adipose Tissue Engineering Based on the Controlled Release of Fibroblast Growth Factor-2 in a Collagen Matrix. Tissue Engineering, 2006, .	4.6	0
189	Implications of the activational cleavage of PAR1 by MMP-1 in human breast cancer. Breast Cancer Online: BCO, 2005, 8, .	0.1	0
190	The Fallacy of Epithelial Mesenchymal Transition in Neoplasia. Cancer Research, 2005, 65, 5996-6001.	0.9	489
191	Frizzled-7 receptor ectodomain expression in a colon cancer cell line induces morphological change and attenuates tumor growth. Differentiation, 2005, 73, 142-153.	1.9	52
192	Upregulation of matrix metalloproteinases (MMPs) in breast cancer xenografts: A major induction of stromal MMPâ€13. International Journal of Cancer, 2005, 114, 544-554.	5.1	62
193	Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clinical and Experimental Metastasis, 2005, 22, 115-125.	3.3	50
194	BM18: A novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate, 2005, 65, 35-43.	2.3	50
195	Matrix Metalloproteases and Epithelial-to-Mesenchymal Transition. , 2005, , 297-315.		18
196	The Heat Shock Protein 90 Inhibitor, 17-Allylamino-17-demethoxygeldanamycin, Enhances Osteoclast Formation and Potentiates Bone Metastasis of a Human Breast Cancer Cell Line. Cancer Research, 2005, 65, 4929-4938.	0.9	133
197	Carcinoma Invasion and Metastasis: A Role for Epithelial-Mesenchymal Transition?. Cancer Research, 2005, 65, 5991-5995.	0.9	579
198	Antisense-Mediated Suppression of Hyaluronan Synthase 2 Inhibits the Tumorigenesis and Progression of Breast Cancer. Cancer Research, 2005, 65, 6139-6150.	0.9	124

#	Article	IF	CITATIONS
199	Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. International Journal of Biochemistry and Cell Biology, 2005, 37, 442-450.	2.8	40
200	Bimolecular Interaction of Insulin-Like Growth Factor (IGF) Binding Protein-2 with αvβ3 Negatively Modulates IGF-I-Mediated Migration and Tumor Growth 1. Cancer Research, 2004, 64, 977-984.	0.9	83
201	Pro-Matrix Metalloproteinase-2 Transfection Increases Orthotopic Primary Growth and Experimental Metastasis of MDA-MB-231 Human Breast Cancer Cells in Nude Mice. Cancer Research, 2004, 64, 652-658.	0.9	77
202	Correlation of tumor- and stromal-derived MT1-MMP expression with progression of human ovarian tumors in SCID mice. Gynecologic Oncology, 2004, 95, 437-448.	1.4	25
203	Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines. BMC Cancer, 2004, 4, 40.	2.6	26
204	Transfection of MDA-MB-231 human breast carcinoma cells with bone sialoprotein (BSP) stimulates migration and invasion inÂvitro and growth of primary and secondary tumors in nude mice. Clinical and Experimental Metastasis, 2004, 21, 19-29.	3.3	41
205	Common origins of MDA-MB-435 cells from various sources with those shown to have melonoma properties. Clinical and Experimental Metastasis, 2004, 21, 543-552.	3.3	76
206	LCC15-MB Cells are MDA-MB-435: A Review of Misidentified Breast and prostate cell lines. Clinical and Experimental Metastasis, 2004, 21, 535-541.	3.3	16
207	Epidermal Growth Factor-Induced Epithelio-Mesenchymal Transition in Human Breast Carcinoma Cells. Laboratory Investigation, 2003, 83, 435-448.	3.7	126
208	Selective involvement of TIMP-2 in the second activational cleavage of pro-MMP-2: refinement of the pro-MMP-2 activation mechanism. FEBS Letters, 2003, 553, 457-463.	2.8	30
209	Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opinion on Therapeutic Targets, 2002, 6, 217-233.	3.4	99
210	MT1â€MMP expression promotes tumor growth and angiogenesis through an upâ€regulation of vascular endothelial growth factor expression. FASEB Journal, 2002, 16, 555-564.	0.5	234
211	MT1-MMP-Dependent and -Independent Regulation of Gelatinase A Activation in Long-Term, Ascorbate-Treated Fibroblast Cultures: Regulation by Fibrillar Collagen. Experimental Cell Research, 2002, 272, 109-118.	2.6	25
212	Secondâ€harmonic generation from biological tissues: Effect of excitation wavelength. Scanning, 2002, 24, 175-178.	1.5	19
213	Correlation between extent of osteolytic damage and metastatic burden of human breast cancer metastasis in nude mice: real-time PCR quantitation. Clinical and Experimental Metastasis, 2002, 19, 377-383.	3.3	16
214	Doxycycline-Inducible Expression of SPARC/ Osteonectin/ BM40 in MDA-MB-231 Human Breast Cancer Cells Results in Growth Inhibition. Breast Cancer Research and Treatment, 2002, 75, 73-85.	2.5	83
215	β-Actin—an unsuitable internal control for RT-PCR. Molecular and Cellular Probes, 2001, 15, 307-311.	2.1	299
216	Gelatinase A (MMP-2) activation by skin fibroblasts: dependence on MT1-MMP expression and fibrillar collagen form. Matrix Biology, 2001, 20, 193-203.	3.6	60

#	Article	IF	CITATIONS
217	The Influence of Extracellular Matrix on the Generation of Vascularized, Engineered, Transplantable Tissue. Annals of the New York Academy of Sciences, 2001, 944, 429-442.	3.8	119
218	<title>Two-photon fluorescence spectroscopy for identification of healthy and malignant biological tissues</title> ., 2000, , .		0
219	MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clinical and Experimental Metastasis, 2000, 18, 553-560.	3.3	112
220	Effect of handling and fixation processes on fluorescence spectroscopy of mouse skeletal muscles under two-photon excitation. Applied Optics, 2000, 39, 6312.	2.1	18
221	Models for Studying Cellular Invasion of Basement Membranes. , 1999, 129, 231-250.		8
222	Hematopoietic growth factor after autologous peripheral blood transplantation: comparison of G-CSF and GM-CSF. Bone Marrow Transplantation, 1999, 23, 1251-1256.	2.4	14
223	LCC15-MB: a vimentin-positive human breast cancer cell line from a femoral bone metastasis. Clinical and Experimental Metastasis, 1999, 17, 193-204.	3.3	11
224	Involvement of Focal Adhesion Kinase in Inhibition of Motility of Human Breast Cancer Cells by Sphingosine 1-Phosphate. Experimental Cell Research, 1999, 247, 17-28.	2.6	64
225	Towards the Therapeutic Targeting of Matrix Metalloproteinases in Breast Cancer. , 1999, , 437-452.		1
226	Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Research and Treatment, 1998, 50, 97-116.	2.5	110
227	Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the αvβ3 and αvβ5 integrins. Journal of Cellular Physiology, 1998, 176, 482-494.	4.1	142
228	The LCC15-MB Human Breast Cancer Cell Line Expresses Osteopontin and Exhibits an Invasive and Metastatic Phenotype. Experimental Cell Research, 1998, 241, 273-284.	2.6	47
229	Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7959-7964.	7.1	374
230	Calcium influx inhibits MT1-MMP processing and blocks MMP-2 activation. FEBS Letters, 1997, 412, 568-572.	2.8	33
231	Elevated cyclic AMP suppresses ConA-induced MT1-MMP expression in MDA-MB-231 human breast cancer cells. Clinical and Experimental Metastasis, 1997, 16, 185-191.	3.3	24
232	Human breast cancer cell metastasis to long bone and soft organs of nude mice: a quantitative assay. Clinical and Experimental Metastasis, 1997, 15, 173-182.	3.3	21
233	Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clinical and Experimental Metastasis, 1997, 15, 519-526.	3.3	78
234	MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clinical and Experimental Metastasis, 1997, 15, 111-120.	3.3	101

#	Article	IF	CITATIONS
235	Scleral Matrix Metalloproteinases, Serine Proteinase Activity and Hydrational Capacity are Increased in Myopia Induced by Retinal Image Degradation. Experimental Eye Research, 1996, 63, 369-381.	2.6	34
236	ISâ€RTâ€PCR assay detection of MTâ€MMP in a human breast cancer cell line. IUBMB Life, 1996, 39, 553-561.	3.4	2
237	VIMENTIN EXPRESSION IN CERVICAL CARCINOMAS: ASSOCIATION WITH INVASIVE AND MIGRATORY POTENTIAL. Journal of Pathology, 1996, 180, 175-180.	4.5	107
238	High level of MT-MMP expression is associated with invasiveness of cervical cancer cells. International Journal of Cancer, 1996, 65, 209-213.	5.1	146
239	The Epithelial to Mesenchymal Transition and Metastatic Progression in Carcinoma. Breast Journal, 1996, 2, 83-96.	1.0	76
240	Invasive phenotype of MCF10A cells overexpressing câ€Haâ€ <i>ras</i> and câ€ <i>erb</i> Bâ€2 oncogenes. International Journal of Cancer, 1995, 63, 815-822.	5.1	76
241	Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clinical and Experimental Metastasis, 1994, 12, 181-194.	3.3	78
242	Hepatocyte growth factor stimulates invasion across reconstituted basement membranes by a new human small intestinal cell line. Clinical and Experimental Metastasis, 1994, 12, 143-154.	3.3	37
243	Modulation of breast cancer progression and differentiation by thegp30/neregulin. Breast Cancer Research and Treatment, 1994, 31, 175-182.	2.5	23
244	Hormonal carcinogenesis in breast cancer: cellular and molecular studies of malignant progression. Breast Cancer Research and Treatment, 1994, 31, 237-248.	2.5	60
245	Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Research and Treatment, 1994, 31, 325-335.	2.5	257
246	Sphingosine-1-phosphate, a novel second messenger involved in cell growth regulation and signal transduction, affects growth and invasiveness of human breast cancer cells. Breast Cancer Research and Treatment, 1994, 31, 337-348.	2.5	44
247	Collagen induced MMP-2 activation in human breast cancer. Breast Cancer Research and Treatment, 1994, 31, 357-370.	2.5	51
248	Binding and degradation of hyaluronan by human breast cancer cell lines expressing different forms of CD44: Correlation with invasive potential. Journal of Cellular Physiology, 1994, 160, 275-286.	4.1	161
249	Differential Regulation of Matrix Metalloproteinase-2 Activation in Human Breast Cancer Cell Lines. Annals of the New York Academy of Sciences, 1994, 732, 456-458.	3.8	6
250	Characterization and Novel Activation of 72-kDa Metalloproteinase in Retinal Interphotoreceptor Matrix and Y-79 Cell Culture Medium. Experimental Eye Research, 1994, 59, 257-269.	2.6	18
251	Expression of 67 kDa laminin receptor in human breast cancer cells: regulation by progestins. Clinical and Experimental Metastasis, 1993, 11, 251-261.	3.3	18
252	The invasive and metastatic properties of hormone-independent but hormone-responsive variants of MCF-7 human breast cancer cells. Clinical and Experimental Metastasis, 1993, 11, 15-26.	3.3	71

ERIK WALTER THOMPSON

#	Article	IF	CITATIONS
253	CFTR expression is regulated during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nature Genetics, 1993, 3, 157-164.	21.4	131
254	Hormone resistance, invasiveness, and metastatic potential in breast cancer. Breast Cancer Research and Treatment, 1993, 24, 227-239.	2.5	58
255	Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-basedin vitro assays. Breast Cancer Research and Treatment, 1993, 24, 241-255.	2.5	112
256	Association of MMP-2 Activation Potential With Metastatic Progression in Human Breast Cancer Cell Lines Independent of MMP-2 Production. Journal of the National Cancer Institute, 1993, 85, 1758-1764.	6.3	199
257	The Biology of Breast Tumor Progression: Acquisition of hormone independence and resistance to cytotoxic drugs. Acta OncolÃ ³ gica, 1992, 31, 115-123.	1.8	31
258	lacZ transduced human breast cancer xenografts as an in vivo model for the study of invasion and metastasis. European Journal of Cancer, 1992, 28, 1989-1995.	2.8	57
259	Collagen biosynthesis in cultured rat testicular sertoli and peritubular myoid cells. Life Sciences, 1992, 51, 1585-1596.	4.3	13
260	Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. Journal of Cellular Physiology, 1992, 150, 534-544.	4.1	442
261	Invasive and metastatic properties of MCF-7 cells andrasH-transfected MCF-7 cell lines. International Journal of Cancer, 1992, 50, 665-669.	5.1	26
262	Regulation of basement membrane invasiveness in human breast cance model systems. Molecular and Cellular Endocrinology, 1991, 82, C203-C208.	3.2	13
263	Soluble Laminin and Arginine-Glycine-Aspartic Acid Containing Peptides Differentially Regulate Type IV Collagenase Messenger RNA, Activation, and Localization in Testicular Cell Culture. Biology of Reproduction, 1991, 45, 387-394.	2.7	20
264	TGF? Independently Regulates Invasiveness, Chemotaxis, and Proliferation of Human Breast Cancer Cells. Annals of the New York Academy of Sciences, 1990, 593, 363-366.	3.8	4
265	Regulation of proliferation, invasion and growth factor synthesis in breast cancer by steroids. Journal of Steroid Biochemistry and Molecular Biology, 1990, 37, 305-316.	2.5	99
266	The inter-relationships between ovarian-independent growth, tumorigenicity, invasiveness and antioestrogen resistance in the malignant progression of human breast cancer. Journal of Endocrinology, 1989, 122, 331-340.	2.6	52
267	Regulation of Breast Cancer Cells by Hormones and Growth Factors: Effects on Proliferation and Basement Membrane Invasiveness. Hormone Research, 1989, 32, 242-249.	1.8	11
268	Progression of human breast cancer cells from hormone-dependent to hormone-independent growth both in vitro and in vivo Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3649-3653.	7.1	160
269	Invasive activity and chemotactic response to growth factors by Kaposi's sarcoma cells. Journal of Cellular Biochemistry, 1988, 36, 369-376.	2.6	32
270	Proteoglycan Production by Sertoli and Myoid Cells in Mono-, Co-, and Parabiotic-Culture. Annals of the New York Academy of Sciences, 1987, 513, 415-418.	3.8	6

#	Article	IF	CITATIONS
271	The Continuum of Epithelial Mesenchymal Transition – Implication of Hybrid States for Migration and Survival in Development and Cancer. , 0, , 117-130.		1