
Howard Cedar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/704726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of DNA methylation in genome-wide gene regulation during development. Development (Cambridge), 2022, 149, .	2.5	6
2	Chromosomal coordination and differential structure of asynchronous replicating regions. Nature Communications, 2021, 12, 1035.	12.8	8
3	Asynchronous Replication Timing: A Mechanism for Monoallelic Choice During Development. Frontiers in Cell and Developmental Biology, 2021, 9, 737681.	3.7	2
4	Determining gestational age using genome methylation profile: A novel approach for fetal medicine. Prenatal Diagnosis, 2019, 39, 1005-1010.	2.3	10
5	Role of transcription complexes in the formation of the basal methylation pattern in early development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10387-10391.	7.1	23
6	Postnatal DNA demethylation and its role in tissue maturation. Nature Communications, 2018, 9, 2040.	12.8	56
7	Principles of DNA methylation and their implications for biology and medicine. Lancet, The, 2018, 392, 777-786.	13.7	436
8	Contribution of epigenetic mechanisms to variation in cancer risk among tissues. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2230-2234.	7.1	52
9	Clonally stable Vκ allelic choice instructs Igκ repertoire. Nature Communications, 2017, 8, 15575.	12.8	17
10	DNA METHYLATION: BRIDGING THE GAP BETWEEN GENES AND FUNCTION. European Neuropsychopharmacology, 2017, 27, S431.	0.7	0
11	Programming asynchronous replication in stem cells. Nature Structural and Molecular Biology, 2017, 24, 1132-1138.	8.2	10
12	Annotating the genome by DNA methylation. International Journal of Developmental Biology, 2017, 61, 137-148.	0.6	4
13	Epigenetic mechanism of FMR1 inactivation in Fragile X syndrome. International Journal of Developmental Biology, 2017, 61, 285-292.	0.6	12
14	Islet cells share promoter hypomethylation independently of expression, but exhibit cell-type–specific methylation in enhancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13525-13530.	7.1	49
15	Tissue-specific DNA demethylation is required for proper B-cell differentiation and function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5018-5023.	7.1	83
16	Maintenance of Epigenetic Information. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019372.	5.5	129
17	DNA Methylation in Cancer and Aging. Cancer Research, 2016, 76, 3446-3450.	0.9	646
18	Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1826-34.	7.1	492

#	Article	IF	CITATIONS
19	Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis. Oncotarget, 2015, 6, 11047-11060.	1.8	21
20	Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes and Development, 2015, 29, 923-933.	5.9	83
21	A Novel Pax5-Binding Regulatory Element in the Igκ Locus. Frontiers in Immunology, 2014, 5, 240.	4.8	6
22	Molecular Rules Governing <i>De Novo</i> Methylation in Cancer. Cancer Research, 2014, 74, 1475-1483.	0.9	55
23	Establishment of methylation patterns in ES cells. Nature Structural and Molecular Biology, 2014, 21, 110-112.	8.2	32
24	Aberrant DNA Methylation in ES Cells. PLoS ONE, 2014, 9, e96090.	2.5	11
25	DNA methylation dynamics in health and disease. Nature Structural and Molecular Biology, 2013, 20, 274-281.	8.2	503
26	Clonal allelic predetermination of immunoglobulin-l̂º rearrangement. Nature, 2012, 490, 561-565.	27.8	42
27	Programming of DNA Methylation Patterns. Annual Review of Biochemistry, 2012, 81, 97-117.	11.1	382
28	Epigenetics of haematopoietic cell development. Nature Reviews Immunology, 2011, 11, 478-488.	22.7	151
29	Reprogramming of DNA Replication Timing. Stem Cells, 2010, 28, 443-449.	3.2	20
30	Epigenetic control of recombination in the immune system. Seminars in Immunology, 2010, 22, 323-329.	5.6	20
31	Allelic inactivation of rDNA loci. Genes and Development, 2009, 23, 2437-2447.	5.9	58
32	Linking DNA methylation and histone modification: patterns and paradigms. Nature Reviews Genetics, 2009, 10, 295-304.	16.3	1,944
33	Developmental programming of CpG island methylation profiles in the human genome. Nature Structural and Molecular Biology, 2009, 16, 564-571.	8.2	345
34	Shifts in Replication Timing Actively Affect Histone Acetylation during Nucleosome Reassembly. Molecular Cell, 2009, 34, 767-774.	9.7	72
35	Choreography of Ig allelic exclusion. Current Opinion in Immunology, 2008, 20, 308-317.	5.5	57
36	De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Structural and Molecular Biology, 2008, 15, 1176-1183.	8.2	396

#	Article	IF	CITATIONS
37	DNA replication timing of the human \hat{l}^2 -globin domain is controlled by histone modification at the origin. Genes and Development, 2008, 22, 1319-1324.	5.9	118
38	Role of DNA Methylation in Stable Gene Repression. Journal of Biological Chemistry, 2007, 282, 12194-12200.	3.4	129
39	Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genetics, 2007, 39, 232-236.	21.4	1,062
40	Allelic 'choice' governs somatic hypermutation in vivo at the immunoglobulin \hat{I}^2 -chain locus. Nature Immunology, 2007, 8, 715-722.	14.5	45
41	G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biology, 2006, 8, 188-194.	10.3	581
42	Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genetics, 2006, 38, 149-153.	21.4	456
43	Fine Tuning of Globin Gene Expression by DNA Methylation. PLoS ONE, 2006, 1, e46.	2.5	43
44	Epigenetic ontogeny of the Igk locus during B cell development. Nature Immunology, 2005, 6, 198-203.	14.5	152
45	Silence of the genes — mechanisms of long-term repression. Nature Reviews Genetics, 2005, 6, 648-654.	16.3	78
46	A stepwise epigenetic process controls immunoglobulin allelic exclusion. Nature Reviews Immunology, 2004, 4, 753-761.	22.7	69
47	CTCF Elements Direct Allele-Specific Undermethylation at the Imprinted H19 Locus. Current Biology, 2004, 14, 1007-1012.	3.9	30
48	Regulation of imprinting: A multiâ€ŧiered process. Journal of Cellular Biochemistry, 2003, 88, 400-407.	2.6	26
49	Epigenetic mechanisms that regulate antigen receptor gene expression. Current Opinion in Immunology, 2003, 15, 176-181.	5.5	37
50	The role of DNA methylation in setting up chromatin structure during development. Nature Genetics, 2003, 34, 187-192.	21.4	337
51	Replicating by the clock. Nature Reviews Molecular Cell Biology, 2003, 4, 25-32.	37.0	148
52	Biallelic Germline Transcription at the κ Immunoglobulin Locus. Journal of Experimental Medicine, 2003, 197, 743-750.	8.5	48
53	A multistep mechanism for the activation of rearrangement in the immune system. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7557-7562.	7.1	24
54	Establishment of transcriptional competence in early and late S phase. Nature, 2002, 420, 198-202.	27.8	163

#	Article	IF	CITATIONS
55	Differential accessibility at the $\hat{I}^{_{2}}$ chain locus plays a role in allelic exclusion. EMBO Journal, 2002, 21, 5255-5261.	7.8	59
56	The imprinting mechanism of the Prader-Willi/Angelman regional control center. EMBO Journal, 2002, 21, 5807-5814.	7.8	84
57	Epigenetic Crosstalk. Molecular Cell, 2001, 8, 933-935.	9.7	39
58	Asynchronous replication and allelic exclusion in the immune system. Nature, 2001, 414, 221-225.	27.8	222
59	The imprinting box of the Prader-Willi/Angelman syndrome domain. Nature Genetics, 2000, 26, 440-443.	21.4	106
60	Allele-specific expression patterns of interleukin-2 and Pax-5 revealed by a sensitive single-cell RT-PCR analysis. Current Biology, 2000, 10, 789-792.	3.9	72
61	Imprinting: focusing on the center. Current Opinion in Genetics and Development, 2000, 10, 550-554.	3.3	41
62	Developmental regulation of immune system gene rearrangement. Current Opinion in Immunology, 1999, 11, 64-69.	5.5	31
63	The amazing demethylase. Nature, 1999, 397, 568-569.	27.8	68
64	Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature, 1999, 401, 929-932.	27.8	163
65	DNA methylation represses transcription in vivo. Nature Genetics, 1999, 22, 203-206.	21.4	341
66	Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Research, 1998, 26, 5573-5580.	14.5	37
67	DNA methylation: A molecular lock. Current Biology, 1997, 7, R305-R307.	3.9	164
68	The role of DNA demethylation during development. Genes To Cells, 1997, 2, 481-486.	1.2	28
69	DNA Demethylation In Vitro: Involvement of RNA. Cell, 1996, 86, 709-718.	28.9	190
70	A role for nuclear NF–κB in B–cell–specific demethylation of the Igκ locus. Nature Genetics, 1996, 13, 435-441.	21.4	220
71	Gamete–specific methylation correlates with imprinting of the murine Xist gene. Nature Genetics, 1995, 9, 312-315.	21.4	108
			_

72 Action at a distance. Nature, 1995, 375, 16-17.

27.8 14

#	Article	IF	CITATIONS
73	Developmental changes in methylation of spermatogenesis–specific genes include reprogramming in the epididymis. Nature Genetics, 1994, 7, 59-63.	21.4	149
74	Spl elements protect a CpG island from de novo methylation. Nature, 1994, 371, 435-438.	27.8	698
75	DNA methylation and genomic imprinting. Cell, 1994, 77, 473-476.	28.9	356
76	B cell-specific demethylation: A novel role for the intronic κ chain enhancer sequence. Cell, 1994, 76, 913-923.	28.9	185
77	Role of DNA methylation in the regulation of transcription. Current Opinion in Genetics and Development, 1994, 4, 255-259.	3.3	302
78	Allelic inactivation regulates olfactory receptor gene expression. Cell, 1994, 78, 823-834.	28.9	985
79	Dynamics of DNA methylation during development. BioEssays, 1993, 15, 709-713.	2.5	121
80	Chromosome structure and eukaryotic gene organization. Current Opinion in Genetics and Development, 1991, 1, 534-537.	3.3	10
81	Demethylation of CpG islands in embryonic cells. Nature, 1991, 351, 239-241.	27.8	153
82	Dynamics of demethylation and activation of the α-actin gene in myoblasts. Cell, 1990, 63, 1229-1237.	28.9	164
83	Mapping replication units in animal cells. Cell, 1989, 57, 909-920.	28.9	241
84	A temperature-sensitive mutation in asparaginyl-tRNA synthetase causes cell-cycle arrest in early S phase. Experimental Cell Research, 1989, 184, 53-60.	2.6	6
85	DNA methylation and gene activity. Cell, 1988, 53, 3-4.	28.9	894
86	5-aza-C-induced changes in the time of replication of the X chromosomes of Microtus agrestis are followed by non-random reversion to a late pattern of replication. Chromosoma, 1987, 95, 81-88.	2.2	19
87	Muscle-specific activation of a methylated chimeric actin gene. Cell, 1986, 46, 409-416.	28.9	138
88	DNA methylation affects the formation of active chromatin. Cell, 1986, 44, 535-543.	28.9	578
89	DNA hypomethylation causes an increase in DNase-I sensitivity and an advance in the time of replication of the entire inactive X chromosome. Chromosoma, 1985, 93, 152-156.	2.2	80
90	DNase I sensitivity in facultative and constitutive heterochromatin. Chromosoma, 1985, 93, 38-42.	2.2	50

#	Article	IF	CITATIONS
91	Regulated expression of an introduced MHC H–2Kbm1 gene in murine embryonal carcinoma cells. Nature, 1984, 310, 415-418.	27.8	61
92	Mapping of DNAase I sensitive regions on mitotic chromosomes. Cell, 1984, 38, 493-499.	28.9	146
93	DNA Methylation in Eukaryotic Cells. International Review of Cytology, 1984, 92, 159-185.	6.2	78
94	In situ nick-translation distinguishes between active and inactive X chromosomes. Nature, 1983, 304, 88-90.	27.8	92
95	Effect of CpG methylation onMspI. Nucleic Acids Research, 1983, 11, 3571-3580.	14.5	67
96	Substrate and sequence specificity of a eukaryotic DNA methylase. Nature, 1982, 295, 620-622.	27.8	448
97	Methylation of CpG sequences in eukaryotic DNA. FEBS Letters, 1981, 124, 67-71.	2.8	273
98	Sequence specificity of methylation in higher plant DNA. Nature, 1981, 292, 860-862.	27.8	727
99	In vitro methylation of DNA with Hpa II methylase. Nucleic Acids Research, 1981, 9, 633-646.	14.5	56
100	Restriction enzyme digestion of hemimethylated DNA. Nucleic Acids Research, 1981, 9, 2509-2515.	14.5	105
101	Nuclease sensitivity of active chromatin. Nucleic Acids Research, 1980, 8, 5143-5156.	14.5	27
102	Direct detection of methylated cytosine in DNA by use of the restriction enzyme Mspl. Nucleic Acids Research, 1979, 6, 2125-2132.	14.5	187
103	Nick translation of active genes in intact nuclei. Developmental Biology, 1979, 69, 496-505.	2.0	54
104	Organization of 5-methylcytosine in chromosomal DNA. Biochemistry, 1978, 17, 2934-2938.	2.5	105
105	Selective degradation of integrated murine leukemia proviral DNA by deoxyribonucleases. Cell, 1977, 11, 933-940.	28.9	101
106	Transcription of DNA and chromatin with calf thymus RNA polymerase B in vitro. Journal of Molecular Biology, 1975, 95, 257-269.	4.2	46
107	Transcription of chromatin in vitro. Journal of Molecular Biology, 1973, 77, 237-254.	4.2	146