
Andreas Stracke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	1,377
2	Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 2011, 35, 397-429.	3.1	1,371
3	MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	563
4	FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	512
5	Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	416
6	Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	389
7	Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 2012, 330-331, 274-299.	3.3	343
8	Nb/Ta and Zr/Hf in ocean island basalts — Implications for crust–mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters, 2007, 254, 158-172.	4.4	322
9	Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. Journal of Petrology, 2006, 47, 1261-1315.	2.8	289
10	Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 2010, 276, 188-197.	3.3	239
11	Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth and Planetary Science Letters, 2007, 256, 433-454.	4.4	234
12	Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochimica Et Cosmochimica Acta, 2008, 72, 3258-3286.	3.9	221
13	The importance of melt extraction for tracing mantle heterogeneity. Geochimica Et Cosmochimica Acta, 2009, 73, 218-238.	3.9	196
14	Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth and Planetary Science Letters, 2009, 286, 208-218.	4.4	175
15	Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters, 2012, 355-356, 162-173.	4.4	173
16	Theistareykir revisited. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	142
17	Chondritic Mg isotope composition of the Earth. Geochimica Et Cosmochimica Acta, 2010, 74, 5069-5083.	3.9	141
18	Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth and Planetary Science Letters, 2009, 279, 44-52.	4.4	135

ANDREAS STRACKE

#	Article	IF	CITATIONS
19	GSD-1G and MPI-DING Reference Glasses for In Situ and Bulk Isotopic Determination. Geostandards and Geoanalytical Research, 2011, 35, 193-226.	3.1	122
20	Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters, 2017, 466, 152-167.	4.4	120
21	Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth and Planetary Science Letters, 2018, 482, 33-43.	4.4	106
22	Melt extraction in the Earth's mantle: Constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth and Planetary Science Letters, 2006, 244, 97-112.	4.4	105
23	A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget – Evidence from continental basalts from Central Germany. Geochimica Et Cosmochimica Acta, 2012, 77, 232-251.	3.9	98
24	The peculiar geochemical signatures of São Miguel (Azores) lavas: Metasomatised or recycled mantle sources?. Earth and Planetary Science Letters, 2007, 259, 186-199.	4.4	88
25	The geochemical consequences of mixing melts from a heterogeneous mantle. Geochimica Et Cosmochimica Acta, 2013, 114, 112-143.	3.9	88
26	Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	69
27	Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochimica Et Cosmochimica Acta, 2012, 85, 114-141.	3.9	68
28	Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	67
29	Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton (Canada). Chemical Geology, 2017, 455, 57-83.	3.3	67
30	Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochimica Et Cosmochimica Acta, 2004, 68, 2699-2724.	3.9	56
31	Timing of juvenile arc crust formation and evolution in the Sapat Complex (Kohistan–Pakistan). Chemical Geology, 2011, 280, 243-256.	3.3	55
32	Insights into the dynamics of mantle plumes from uranium-series geochemistry. Nature, 2006, 444, 713-717.	27.8	53
33	Ubiquitous ultra-depleted domains in Earth's mantle. Nature Geoscience, 2019, 12, 851-855.	12.9	52
34	The dynamics of melting beneath Theistareykir, northern Iceland. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	48
35	The tungsten-182 record of kimberlites above the African superplume: Exploring links to the core-mantle boundary. Earth and Planetary Science Letters, 2020, 547, 116473.	4.4	40
36	Origins of kimberlites and carbonatites during continental collision – Insights beyond decoupled Nd-Hf isotopes. Earth-Science Reviews, 2020, 208, 103287.	9.1	40

ANDREAS STRACKE

#	Article	IF	CITATIONS
37	Melt evolution beneath a rifted craton edge: 40 Ar/ 39 Ar geochronology and Sr–Nd–Hf–Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield. Geochimica Et Cosmochimica Acta, 2016, 173, 1-36.	3.9	35
38	Lead transport in intra-oceanic subduction zones: 2D geochemical–thermo-mechanical modeling of isotopic signatures. Lithos, 2014, 208-209, 265-280.	1.4	32
39	Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: Evidence from the Pilbara Craton, Western Australia. Earth and Planetary Science Letters, 2019, 528, 115841.	4.4	31
40	Rifting-related volcanism in an oceanic post-collisional setting: the Tabar–Lihir–Tanga–Feni (TLTF) island chain, Papua New Guinea. Lithos, 1998, 45, 545-560.	1.4	30
41	Sheared Peridotite and Megacryst Formation Beneath the Kaapvaal Craton: a Snapshot of Tectonomagmatic Processes across the Lithosphere–Asthenosphere Transition. Journal of Petrology, 2021, 62, .	2.8	27
42	Simplified mantle architecture and distribution of radiogenic power. Geochemistry, Geophysics, Geosystems, 2013, 14, 2265-2285.	2.5	26
43	Effects of simple acid leaching of crushed and powdered geological materials on highâ€precision Pb isotope analyses. Geochemistry, Geophysics, Geosystems, 2015, 16, 2276-2302.	2.5	25
44	Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity. Geochimica Et Cosmochimica Acta, 2016, 195, 142-157.	3.9	23
45	Tracing dehydration and melting of the subducted slab with tungsten isotopes in arc lavas. Earth and Planetary Science Letters, 2020, 530, 115942.	4.4	22
46	Comparing the nature of the western and eastern Azores mantle. Geochimica Et Cosmochimica Acta, 2016, 172, 76-92.	3.9	21
47	Constraints on mantle evolution from Ce-Nd-Hf isotope systematics. Geochimica Et Cosmochimica Acta, 2020, 272, 36-53.	3.9	20
48	Compositional diversity among primitive lavas of Mauritius, Indian Ocean: Implications for mantle sources. Journal of Volcanology and Geothermal Research, 2007, 164, 76-94.	2.1	19
49	The Origin of Carbonatites from Amba Dongar within the Deccan Large Igneous Province. Journal of Petrology, 2019, 60, 1119-1134.	2.8	18
50	Ancient refractory asthenosphere revealed by mantle re-melting at the Arctic Mid Atlantic Ridge. Earth and Planetary Science Letters, 2021, 566, 116981.	4.4	18
51	A process-oriented approach to mantle geochemistry. Chemical Geology, 2021, 579, 120350.	3.3	18
52	Accurate and precise measurement of Ce isotope ratios by thermal ionization mass spectrometry (TIMS). Chemical Geology, 2018, 476, 119-129.	3.3	17
53	Earth's chondritic light rare earth element composition: Evidence from the Ce–Nd isotope systematics of chondrites and oceanic basalts. Earth and Planetary Science Letters, 2019, 509, 55-65.	4.4	17
54	Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate. Geological Society Special Publication, 2022, 513, 17-44.	1.3	16

ANDREAS STRACKE

#	Article	IF	CITATIONS
55	The Loongana (CL) group of carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2021, 304, 1-31.	3.9	15
56	Comment to "Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC–ICP–MS―by Baker et al Chemical Geology, 2005, 217, 171-174.	3.3	14
57	A comparison of sulfur isotope measurements of geologic materials by inductively coupled plasma and gas source mass spectrometry. Chemical Geology, 2020, 558, 119869.	3.3	9
58	Constraints on Archean crust formation from open system models of Earth evolution. Chemical Geology, 2019, 530, 119307.	3.3	7
59	Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments. Lithos, 2021, 380-381, 105859.	1.4	7
60	Tracking mantle depletion. Nature Geoscience, 2008, 1, 215-216.	12.9	6
61	Process-related isotope variability in oceanic basalts revealed by high-precision Sr isotope ratios in olivine-hosted melt inclusions. Chemical Geology, 2019, 524, 1-10.	3.3	5
62	Mantle Geochemistry. Encyclopedia of Earth Sciences Series, 2018, , 867-878.	0.1	3
63	Correction to "Domains of depleted mantle: New evidence from hafnium and neodymium isotopesâ€. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	1
64	Composition of Earth's Mantle. , 2021, , 164-177.		1
65	Depleted Mantle. Encyclopedia of Earth Sciences Series, 2016, , 182-185.	0.1	1
66	Mantle Geochemistry. Encyclopedia of Earth Sciences Series, 2016, , 1-12.	0.1	1
67	Mantle Geochemistry. Encyclopedia of Earth Sciences Series, 2016, , 1-12.	0.1	0

68 Depleted Mantle. , 2015, , 1-5.

0