
Chris N Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effectiveness of thermal cameras compared to spotlights for counts of arid zone mammals across a range of ambient temperatures. Australian Mammalogy, 2022, 44, 59-66.	1.1	2
2	Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. Wildlife Research, 2022, 49, 158-168.	1.4	6
3	Dynamics and predicted distribution of an irrupting â€~sleeper' population: fallow deer in Tasmania. Biological Invasions, 2022, 24, 1131-1147.	2.4	11
4	Rapid gain and loss of predator recognition by an evolutionarily naÃ ⁻ ve lizard. Austral Ecology, 2022, 47, 641-652.	1.5	3
5	Too hot for the devil? Did climate change cause the midâ€Holocene extinction of the Tasmanian devil <i>Sarcophilus harrisii</i> from mainland Australia?. Ecography, 2022, 2022, .	4.5	7
6	Sahul's megafauna were vulnerable to plantâ€community changes due to their position in the trophic network. Ecography, 2022, 2022, .	4.5	6
7	How many bird and mammal extinctions has recent conservation action prevented?. Conservation Letters, 2021, 14, e12762.	5.7	113
8	A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201194.	2.6	23
9	Cats are a key threatening factor to the survival of local populations of native small mammals in Australia. Wildlife Research, 2021, , .	1.4	10
10	Relative demographic susceptibility does not explain the extinction chronology of Sahul's megafauna. ELife, 2021, 10, .	6.0	10
11	The effects of weather variability on patterns of genetic diversity in Tasmanian bettongs. Molecular Ecology, 2021, 30, 1777-1790.	3.9	3
12	Accidents alter animal fitness landscapes. Ecology Letters, 2021, 24, 920-934.	6.4	14
13	Factors affecting success of conservation translocations of terrestrial vertebrates: A global systematic review. Global Ecology and Conservation, 2021, 28, e01630.	2.1	41
14	Long-Distance Movements of Feral Cats in Semi-Arid South Australia and Implications for Conservation Management. Animals, 2021, 11, 3125.	2.3	1
15	Research supporting restoration aiming to make aÂfragmented landscape â€~functional' for native wildlife. Ecological Management and Restoration, 2021, 22, 65-74.	1.5	15
16	The short-term response of feral cats to rabbit population decline: Are alternative native prey more at risk?. Biological Invasions, 2020, 22, 799-811.	2.4	24
17	Short-term pain before long-term gain? Suppression of invasive primary prey temporarily increases predation on native lizards. Biological Invasions, 2020, 22, 2063-2078.	2.4	3
18	Animals as Agents in Fire Regimes. Trends in Ecology and Evolution, 2020, 35, 346-356.	8.7	31

#	Article	IF	CITATIONS
19	Activity and social interactions in a wide-ranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animal-borne video collars. PLoS ONE, 2020, 15, e0230216.	2.5	16
20	Changing bird communities of an agricultural landscape: declines in arboreal foragers, increases in large species. Royal Society Open Science, 2020, 7, 200076.	2.4	15
21	Conservation trade-offs: Island introduction of a threatened predator suppresses invasive mesopredators but eliminates a seabird colony. Biological Conservation, 2020, 248, 108635.	4.1	17
22	A native apex predator limits an invasive mesopredator and protects native prey: Tasmanian devils protecting bandicoots from cats. Ecology Letters, 2020, 23, 711-721.	6.4	38
23	Space use and temporal partitioning of sympatric Tasmanian devils and spottedâ€ŧailed quolls. Austral Ecology, 2020, 45, 355-365.	1.5	18
24	Edge effects created by fenced conservation reserves benefit an invasive mesopredator. Wildlife Research, 2020, 47, 677.	1.4	3
25	Management of invasive mesopredators in the Flinders Ranges, South Australia: effectiveness and implications. Wildlife Research, 2020, 47, 720.	1.4	18
26	Roughing it: terrain is crucial in identifying novel translocation sites for the vulnerable brush-tailed rock-wallaby (Petrogale pencillata). Royal Society Open Science, 2020, 7, 201603.	2.4	1
27	Stateâ€space modeling reveals habitat perception of a small terrestrial mammal in a fragmented landscape. Ecology and Evolution, 2019, 9, 9804-9814.	1.9	5
28	Temporal partitioning of activity: rising and falling topâ€predator abundance triggers communityâ€wide shifts in diel activity. Ecography, 2019, 42, 2157-2168.	4.5	44
29	Trophic rewilding establishes a landscape of fear: Tasmanian devil introduction increases riskâ€sensitive foraging in a key prey species. Ecography, 2019, 42, 2053-2059.	4.5	25
30	Micro Methods for Megafauna: Novel Approaches to Late Quaternary Extinctions and Their Contributions to Faunal Conservation in the Anthropocene. BioScience, 2019, 69, 877-887.	4.9	11
31	Systematic planning can rapidly close the protection gap in Australian mammal havens. Conservation Letters, 2019, 12, e12611.	5.7	12
32	Chronic stress in superb fairyâ€wrens occupying remnant woodlands: Are noisy miners to blame?. Austral Ecology, 2019, 44, 1139-1149.	1.5	9
33	Livestock guardian dogs and animal welfare: Comment on "Animal welfare considerations for using large carnivores and guardian dogs as vertebrate biocontrol tools against other animals― Biological Conservation, 2019, 236, 580-581.	4.1	7
34	Modelling horse management in the Australian Alps. Ecological Management and Restoration, 2019, 20, 57-62.	1.5	9
35	Impacts of feral horses in the Australian Alps and evidenceâ€based solutions. Ecological Management and Restoration, 2019, 20, 63-72.	1.5	43
36	Ecosystem engineering by digging mammals: effects on soil fertility and condition in Tasmanian temperate woodland. Royal Society Open Science, 2019, 6, 180621.	2.4	22

#	Article	IF	CITATIONS
37	Harnessing the power of ecological interactions to reduce the impacts of feral cats. Biodiversity, 2019, 20, 43-47.	1.1	9
38	Home range size scales to habitat amount and increasing fragmentation in a mobile woodland specialist. Ecology and Evolution, 2019, 9, 14005-14014.	1.9	18
39	Canine distemper in Nepal's Annapurna Conservation Area – Implications of dog husbandry and human behaviour for wildlife disease. PLoS ONE, 2019, 14, e0220874.	2.5	14
40	Making the connection: expanding the role of restoration genetics in restoring and evaluating connectivity. Restoration Ecology, 2018, 26, 411-418.	2.9	22
41	Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews, 2018, 93, 845-862.	10.4	183
42	Top carnivore decline has cascading effects on scavengers and carrion persistence. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	2.6	62
43	Degrees of population-level susceptibility of Australian terrestrial non-volant mammal species to predation by the introduced red fox (Vulpes vulpes) and feral cat (Felis catus). Wildlife Research, 2018, 45, 645.	1.4	63
44	Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landscape Ecology, 2018, 33, 1837-1849.	4.2	42
45	Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildlife Research, 2018, 45, 627.	1.4	125
46	An exotic woody weed in a pastoral landscape provides habitat for many native species, but has no apparent threatened species conservation significance. Ecological Management and Restoration, 2018, 19, 212-221.	1.5	9
47	Can trophic rewilding reduce the impact of fire in a more flammable world?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170443.	4.0	45
48	Hope and caution: rewilding to mitigate the impacts of biological invasions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180127.	4.0	17
49	Zoonotic Helminth Diseases in Dogs and Dingoes Utilising Shared Resources in an Australian Aboriginal Community. Tropical Medicine and Infectious Disease, 2018, 3, 110.	2.3	14
50	Olfactory communication to protect livestock: dingo response to urine marks of livestock guardian dogs. Australian Mammalogy, 2017, 39, 219.	1.1	11
51	Biodiversity losses and conservation responses in the Anthropocene. Science, 2017, 356, 270-275.	12.6	586
52	The hookworm Ancylostoma ceylanicum : An emerging public health risk in Australian tropical rainforests and Indigenous communities. One Health, 2017, 3, 66-69.	3.4	35
53	Top predators constrain mesopredator distributions. Nature Communications, 2017, 8, 15469.	12.8	115
54	Enumerating a continental-scale threat: How many feral cats are in Australia?. Biological Conservation, 2017, 206, 293-303.	4.1	179

4

#	Article	IF	CITATIONS
55	Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports, 2017, 7, 11624.	3.3	43
56	Prey use by dingoes in a contested landscape: Ecosystem service provider or biodiversity threat?. Ecology and Evolution, 2017, 7, 8927-8935.	1.9	12
57	Impacts and management of feral cats <i>Felis catus</i> in Australia. Mammal Review, 2017, 47, 83-97.	4.8	138
58	Biodiversity friend or foe: land use by a top predator, the dingo in contested landscapes of the Australian Wet Tropics. Austral Ecology, 2017, 42, 252-264.	1.5	10
59	Dietary partitioning of Australia's two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range. PLoS ONE, 2017, 12, e0188529.	2.5	33
60	Fire, people and ecosystem change in Pleistocene Australia. Australian Journal of Botany, 2016, 64, 643.	0.6	15
61	Sarcoptes scabiei: The Mange Mite with Mighty Effects on the Common Wombat (Vombatus ursinus). PLoS ONE, 2016, 11, e0149749.	2.5	40
62	Occupancy of the Invasive Feral Cat Varies with Habitat Complexity. PLoS ONE, 2016, 11, e0152520.	2.5	47
63	The virtuous circle: predatorâ€friendly farming andÂecological restoration in Australia. Restoration Ecology, 2016, 24, 821-826.	2.9	33
64	Mammalian diggers and the ecological impacts of fire. Animal Conservation, 2016, 19, 502-503.	2.9	1
65	A systematic review of the impacts and management of introduced deer (family Cervidae) in Australia. Wildlife Research, 2016, 43, 515.	1.4	100
66	The significance of topographic complexity in habitat selection and persistence of a declining marsupial in the Kimberley region of Western Australia. Australian Journal of Zoology, 2016, 64, 198.	1.0	19
67	Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150169.	4.0	125
68	Sympatric predator odour reveals a competitive relationship in size-structured mammalian carnivores. Behavioral Ecology and Sociobiology, 2016, 70, 1831-1841.	1.4	10
69	Geographic variation in the ecological effects of extinction of Australia's Pleistocene megafauna. Ecography, 2016, 39, 109-116.	4.5	24
70	Livestock guardian dogs as surrogate top predators? How Maremma sheepdogs affect a wildlife community. Ecology and Evolution, 2016, 6, 6702-6711.	1.9	21
71	A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates. Scientific Data, 2016, 3, 160053.	5.3	16
72	Extraterritorial hunting expeditions to intense fire scars by feral cats. Scientific Reports, 2016, 6, 22559.	3.3	88

#	ARTICLE	IF	CITATIONS
73	Rainfall and topography predict gene flow among populations of the declining northern quoll (Dasyurus hallucatus). Conservation Genetics, 2016, 17, 1213-1228.	1.5	23
74	Dingoes (Canis dingo Meyer, 1793) continue to be an important reservoir host of Dirofilaria immitis in low density housing areas in Australia. Veterinary Parasitology, 2016, 215, 6-10.	1.8	19
75	Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 2016, 7, 10511.	12.8	109
76	CPS collars are more efficient when collecting high-frequency data. Australian Mammalogy, 2016, 38, 237.	1.1	6
77	What caused extinction of the Pleistocene megafauna of Sahul?. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152399.	2.6	41
78	Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 847-855.	7.1	270
79	Amplified predation after fire suppresses rodent populations in Australia's tropical savannas. Wildlife Research, 2015, 42, 705.	1.4	152
80	Using the Spatial Population Abundance Dynamics Engine for conservation management. Methods in Ecology and Evolution, 2015, 6, 1407-1416.	5.2	9
81	Post-fire habitat use of the golden-backed tree-rat (<i>Mesembriomys macrurus</i>) in the northwest Kimberley, Western Australia. Austral Ecology, 2015, 40, 941-952.	1.5	18
82	Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video. PLoS ONE, 2015, 10, e0133915.	2.5	172
83	Resolving the value of the dingo in ecological restoration. Restoration Ecology, 2015, 23, 201-208.	2.9	67
84	Empirical tests of harvestâ€induced bodyâ€size evolution along a geographic gradient in <scp>A</scp> ustralian macropods. Journal of Animal Ecology, 2015, 84, 299-309.	2.8	8
85	Using dung fungi to interpret decline and extinction ofÂmegaherbivores: problems and solutions. Quaternary Science Reviews, 2015, 110, 107-113.	3.0	39
86	Uncertainties in dating constrain model choice for inferring extinction time from fossil records. Quaternary Science Reviews, 2015, 112, 128-137.	3.0	37
87	Density and home range of feral cats in north-western Australia. Wildlife Research, 2015, 42, 223.	1.4	65
88	Response to commentary by Woinarski (Critical-weight-range marsupials in northern Australia are) Tj ETQq0 0 0	rgBT /Over 5.8	lock 10 Tf 50 2
89	Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages. Quaternary Geochronology, 2015, 30, 69-79.	1.4	31

90Ecological and economic benefits to cattle rangelands of restoring an apex predator. Journal of
Applied Ecology, 2015, 52, 455-466.4.045

#	Article	IF	CITATIONS
91	Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya, 2015, 6, 169-226.	0.4	80
92	Testing the Role of Climate Change in Species Decline: Is the Eastern Quoll a Victim of a Change in the Weather?. PLoS ONE, 2015, 10, e0129420.	2.5	26
93	Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical. PLoS ONE, 2015, 10, e0130626.	2.5	29
94	Experimental evidence that feral cats cause local extirpation of small mammals in <scp>A</scp> ustralia's tropical savannas. Journal of Applied Ecology, 2014, 51, 1486-1493.	4.0	99
95	How guardian dogs protect livestock from predators: territorial enforcement by Maremma sheepdogs. Wildlife Research, 2014, 41, 662.	1.4	23
96	An ecological regime shift resulting from disrupted predator–prey interactions in Holocene Australia. Ecology, 2014, 95, 693-702.	3.2	46
97	Differing impact of a major biogeographic barrier on genetic structure in two large kangaroos from the monsoon tropics of Northern Australia. Ecology and Evolution, 2014, 4, 554-567.	1.9	25
98	Experiments in no-impact control of dingoes: comment on Allen et al. 2013. Frontiers in Zoology, 2014, 11, 17.	2.0	12
99	Translating nutritional ecology from the laboratory to the field: milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos, 2014, 123, 298-308.	2.7	51
100	Beyond the disease: Is Toxoplasma gondii infection causing population declines in the eastern quoll (Dasyurus viverrinus)?. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 102-112.	1.5	24
101	The current decline of tropical marsupials in <scp>A</scp> ustralia: is history repeating?. Global Ecology and Biogeography, 2014, 23, 181-190.	5.8	122
102	Predicting the future range and abundance of fallow deer in Tasmania, Australia. Wildlife Research, 2014, 41, 633.	1.4	16
103	Landscape Management of Fire and Grazing Regimes Alters the Fine-Scale Habitat Utilisation by Feral Cats. PLoS ONE, 2014, 9, e109097.	2.5	189
104	Where Do Livestock Guardian Dogs Go? Movement Patterns of Free-Ranging Maremma Sheepdogs. PLoS ONE, 2014, 9, e111444.	2.5	41
105	Male-Biased Predation and Its Effect on Paternity Skew and Life History in a Population of Common Brushtail Possums (Trichosurus vulpecula). PLoS ONE, 2014, 9, e111746.	2.5	3
106	Rapid megafaunal extinction following human arrival throughout the New World. Quaternary International, 2013, 308-309, 273-277.	1.5	44
107	A faecal index of diet quality that predicts reproductive success in a marsupial folivore. Oecologia, 2013, 173, 203-212.	2.0	20
108	No need for disease: testing extinction hypotheses for the thylacine using multiâ€ s pecies metamodels. Journal of Animal Ecology, 2013, 82, 355-364.	2.8	43

Chris N Johnson

#	Article	IF	CITATIONS
109	Continentalâ€Scale Governance and the Hastening of Loss of Australia's Biodiversity. Conservation Biology, 2013, 27, 1133-1135.	4.7	39
110	Prescribed fire in eucalypt woodlands: immediate effects on a microbat community of northern Australia. Wildlife Research, 2013, 40, 70.	1.4	20
111	Brave new green world – Consequences of a carbon economy for the conservation of Australian biodiversity. Biological Conservation, 2013, 161, 71-90.	4.1	61
112	Lack of chronological support for stepwise prehuman extinctions of Australian megafauna. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3368.	7.1	19
113	The dingo and biodiversity conservation: response to Fleming et al. (2012). Australian Mammalogy, 2013, 35, 8.	1.1	23
114	Regional population structuring and conservation units in the platypus (Ornithorhynchus anatinus). Australian Journal of Zoology, 2013, 61, 378.	1.0	9
115	Mating system and local dispersal patterns of an endangered potoroid, the northern bettong (Bettongia tropica). Australian Journal of Zoology, 2012, 60, 278.	1.0	7
116	Biotic interactions influence the projected distribution of a specialist mammal under climate change. Diversity and Distributions, 2012, 18, 861-872.	4.1	82
117	Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. Journal of Applied Ecology, 2012, 49, 1278-1286.	4.0	183
118	Good dog! Using livestock guardian dogs to protect livestock from predators in Australia's extensive grazing systems. Wildlife Research, 2012, 39, 220.	1.4	99
119	The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia. Science, 2012, 335, 1483-1486.	12.6	259
120	Effects of a short fireâ€return interval on resources and assemblage structure of birds in a tropical savanna. Austral Ecology, 2012, 37, 23-34.	1.5	29
121	Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography, 2012, 35, 306-314.	4.5	81
122	Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate. PLoS ONE, 2012, 7, e39208.	2.5	142
123	Climate-driven variation in food availability between the core and range edge of the endangered northern bettong (Bettongia tropica). Australian Journal of Zoology, 2011, 59, 177.	1.0	12
124	Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10 000 years of population growth in Australia. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3748-3754.	2.6	46
125	The disappearing mammal fauna of northern Australia: context, cause, and response. Conservation Letters, 2011, 4, 192-201.	5.7	271
126	The influences of climate, habitat and fire on the distribution of cockatoo grass (Alloteropsis) Tj ETQq0 0 0 rgBT $_{ m c}$	Overlock 0.6	10 Tf 50 67 T 9

315.

#	Article	IF	CITATIONS
127	Red in tooth and claw: how top predators shape terrestrial ecosystems. Journal of Animal Ecology, 2010, 79, 723-725.	2.8	8
128	Predator control promotes invasive dominated ecological states. Ecology Letters, 2010, 13, 1008-1018.	6.4	144
129	Gap-crossing in fragmented habitats by mahogany gliders (Petaurus gracilis). Do they cross roads and powerline corridors?. Australian Mammalogy, 2010, 32, 10.	1.1	23
130	Ecological specialization and population size in a biodiversity hotspot: How rare species avoid extinction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19737-19741.	7.1	90
131	The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology, 2009, 90, 711-719.	3.2	141
132	Ecological consequences of Late Quaternary extinctions of megafauna. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2509-2519.	2.6	241
133	Inter-population differences in the tolerance of a marsupial folivore to plant secondary metabolites. Oecologia, 2009, 161, 539-548.	2.0	18
134	Ants as indicators for vertebrate fauna at a local scale: an assessment of cross-taxa surrogacy in a disturbed matrix. Biodiversity and Conservation, 2009, 18, 3407-3419.	2.6	9
135	Separating the influences of environment and species interactions on patterns of distribution and abundance: competition between large herbivores. Journal of Animal Ecology, 2009, 78, 724-731.	2.8	48
136	Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests. Journal of Applied Ecology, 2009, 46, 641-646.	4.0	103
137	Developing a national framework for Dingo trophic regulation research in Australia: Outcomes of a national workshop. Ecological Management and Restoration, 2009, 10, 168-170.	1.5	5
138	Body mass and extinction risk in Australian marsupials: The â€~Critical Weight Range' revisited. Austral Ecology, 2009, 34, 35-40.	1.5	143
139	Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters, 2009, 12, 982-998.	6.4	920
140	Resistance and resilience: quantifying relative extinction risk in a diverse assemblage of Australian tropical rainforest vertebrates. Diversity and Distributions, 2009, 15, 280-288.	4.1	95
141	Abundance and the Environmental Niche: Environmental Suitability Estimated from Niche Models Predicts the Upper Limit of Local Abundance. American Naturalist, 2009, 174, 282-291.	2.1	338
142	Megafaunal Decline and Fall. Science, 2009, 326, 1072-1073.	12.6	10
143	A national framework for research on trophic regulation by the Dingo in Australia. Pacific Conservation Biology, 2009, 15, 209.	1.0	11
144	Population genetics of the platypus (Ornithorhynchus anatinus): a fine-scale look at adjacent river systems. Australian Journal of Zoology, 2009, 57, 225.	1.0	16

#	Article	IF	CITATIONS
145	Species Richness and Evenness in Australian Birds. American Naturalist, 2008, 171, 480-490.	2.1	32
146	LARGE-HERBIVORE DISTRIBUTION AND ABUNDANCE: INTRA- AND INTERSPECIFIC NICHE VARIATION IN THE TROPICS. Ecological Monographs, 2008, 78, 105-122.	5.4	40
147	Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 341-346.	2.6	257
148	Diet and breeding of the rufous spiny bandicoot Echymipera rufescens australis, Iron Range, Cape York Peninsula. Australian Mammalogy, 2007, 29, 169.	1.1	9
149	Would the Australian megafauna have become extinct if humans had never colonised the continent? Comments on "A review of the evidence for a human role in the extinction of Australian megafauna and an alternative explanation―by S. Wroe and J. Field. Quaternary Science Reviews, 2007, 26, 560-564.	3.0	89
150	Burning season influences the response of bird assemblages to fire in tropical savannas. Biological Conservation, 2007, 137, 90-101.	4.1	28
151	Eroding abodes and vanished bridges: historical biogeography of the substrate specialist pebble-mound mice (Pseudomys). Journal of Biogeography, 2007, 34, 514-523.	3.0	13
152	Bryophyte dispersal by flying foxes: a novel discovery. Oecologia, 2007, 152, 112-114.	2.0	38
153	Niche breadth and geographical range: ecological compensation for geographical rarity in rainforest frogs. Biology Letters, 2006, 2, 532-535.	2.3	44
154	Selective hunting of juveniles as a cause of the imperceptible overkill of the Australian Pleistocene megafauna. Alcheringa, 2006, 30, 39-48.	1.2	30
155	Time allocation to foraging in the mahogany glider Petaurus gracilis (Marsupialia, Petauridae) and a comparison of activity times in exudivorous and folivorous possums and gliders. Journal of Zoology, 2006, 256, 271-277.	1.7	18
156	Range size-abundance relationships in Australian passerines. Global Ecology and Biogeography, 2006, 15, 143-152.	5.8	25
157	Determinants of local abundance in a major radiation of Australian passerines (Aves: Meliphagoidea). Journal of Biogeography, 2006, 33, 794-802.	3.0	18
158	The structure of a micro-bat community in relation to gradients of environmental variation in a tropical urban area. Urban Ecosystems, 2006, 9, 67-82.	2.4	44
159	Latitudinal gradients in abundance, and the causes of rarity in the tropics: a test using Australian honeyeaters (Aves: Meliphagidae). Oecologia, 2006, 149, 406-417.	2.0	12
160	Dietary variation in spectacled flying foxes (Pteropus conspicillatus) of the Australian Wet Tropics. Australian Journal of Zoology, 2006, 54, 417.	1.0	25
161	Adaptive sex allocation in relation to lifeâ€history in the common brushtail possum, <i>Trichosurus vulpecula</i> . Journal of Animal Ecology, 2005, 74, 552-558.	2.8	35

162 Dispersal and population structure of the rufous bettong, Aepyprymnus rufescens (Marsupialia:) Tj ETQq0 0 0 rgBT $\frac{10}{1.5}$ Verlock $\frac{10}{20}$ Tf 50 6

#	Article	IF	CITATIONS
163	Demography in relation to population density in two herbivorous marsupials: testing for source?sink dynamics versus independent regulation of population size. Oecologia, 2005, 143, 70-76.	2.0	10
164	ANTHROPOLOGY: The Remaking of Australia's Ecology. Science, 2005, 309, 255-256.	12.6	13
165	What can the data on late survival of Australian megafauna tell us about the cause of their extinction?. Quaternary Science Reviews, 2005, 24, 2167-2172.	3.0	36
166	Terminal reproductive effort in a marsupial. Biology Letters, 2005, 1, 271-275.	2.3	38
167	Automated feeders: new technology for food supplementation experiments with mammals. Wildlife Research, 2004, 31, 437.	1.4	12
168	Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: No evidence for environmental change as cause of extinction. Austral Ecology, 2004, 29, 553-557.	1.5	41
169	Fire-related changes in biomass of hypogeous sporocarps at foraging points used by a tropical mycophagous marsupial. Mycological Research, 2004, 108, 1438-1446.	2.5	20
170	Diet and habitat preference of the Cape York short-nosed bandicoot (Isoodon obesulus peninsulae) in north-east Queensland. Wildlife Research, 2004, 31, 259.	1.4	17
171	Causes of extinction of vertebrates during the Holocene of mainland Australia: arrival of the dingo, or human impact?. Holocene, 2003, 13, 941-948.	1.7	94
172	Sexual dimorphism and synchrony of breeding: variation in polygyny potential among populations in the common brushtail possum, Trichosurus vulpecula. Behavioral Ecology, 2003, 14, 818-822.	2.2	35
173	Adaptive biases in offspring sex ratios established before birth in a marsupial, the common brushtail possum Trichosurus vulpecula. Behavioral Ecology, 2002, 13, 653-656.	2.2	17
174	Polymorphism, mate choice and sexual selection in the Gouldian finch (Erythrura gouldiae). Australian Journal of Zoology, 2002, 50, 125.	1.0	12
175	Determinants of loss of mammal species during the Late Quaternary â€~megafauna' extinctions: life history and ecology, but not body size. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2221-2227.	2.6	217
176	Phylogeny and the selectivity of extinction in Australian marsupials. Animal Conservation, 2002, 5, 135-142.	2.9	73
177	THE ECOLOGICAL BASIS OF LIFE HISTORY VARIATION IN MARSUPIALS. Ecology, 2001, 82, 3531-3540.	3.2	81
178	Effects of season and fire on the diversity of hypogeous fungi consumed by a tropical mycophagous marsupial. Journal of Animal Ecology, 2001, 70, 945-954.	2.8	48
179	Adjustment of offspring sex ratios in relation to the availability of resources for philopatric offspring in the common brushtail possum. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2001-2005.	2.6	59
180	The Ecological Basis of Life History Variation in Marsupials. Ecology, 2001, 82, 3531.	3.2	3

#	Article	IF	CITATIONS
181			

#	Article	IF	CITATIONS
199	Dispersal and social organization of the northern hairyâ€nosed wombat <i>Lasiorhinus krefftii</i> . Journal of Zoology, 1991, 225, 605-613.	1.7	41
200	Social interactions and reproductive tactics in red-necked wallabies (Macropus rufogriseus) Tj ETQq0 0 0 rgBT /O	verlock 10 1.7) Tf 50 702 To
201	Mortality of Immature Red-Necked Wallabies. Journal of Mammalogy, 1989, 70, 202-204.	1.3	7
202	Grouping and the Structure of Association in the Red-Necked Wallaby. Journal of Mammalogy, 1989, 70, 18-26.	1.3	23
203	Macropod Studies at Wallaby Creek .8. Individual Recognition of Kangaroos and Wallabies. Wildlife Research, 1989, 16, 179.	1.4	36
204	Dispersal and the sex ratio at birth in primates. Nature, 1988, 332, 726-728.	27.8	90
205	Macropod studies at Wallaby Creek. 5. Patterns of defecation by eastern gray kangaroos and red-necked wallabies. Wildlife Research, 1987, 14, 133.	1.4	41
206	Macropod studies at Wallaby Creek. 6. A validation of the use of dung-pellet counts for measuring absolute densities of populations of macropodids. Wildlife Research, 1987, 14, 139.	1.4	70
207	Macropod studies at Wallaby Creek. 4. Home range and movements of the red-necked wallaby. Wildlife Research, 1987, 14, 125.	1.4	41
208	Macropod Studies at Wallaby Creek .1. The Area and Animals. Wildlife Research, 1987, 14, 1.	1.4	18
209	Sex-biased philopatry and dispersal in mammals. Oecologia, 1986, 69, 626-627.	2.0	56
210	Philopatry, reproductive success of females, and maternal investment in the red-necked wallaby. Behavioral Ecology and Sociobiology, 1986, 19, 143-150.	1.4	41
211	Variations in Group Size and Composition in Red and Western Grey Kangaroos, Macropus rufus (Desmarest) and M. fulignosus (Desmarest). Wildlife Research, 1983, 10, 25.	1.4	21
212	Behaviour of the Bilby, Macrotis lagotis (Reid), (Marsupialia : Thylacomyidae) in Captivity. Wildlife Research, 1983, 10, 77.	1.4	22
213	Habitat Selection by Sex, Age and Reproductive Class in the Red Kangaroo, Macropus rufus, in Western New South Wales. Wildlife Research, 1981, 8, 465.	1.4	26

Introducing a new top predator, the dingo. , 0, , 414-428.