
Morten Schak Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pannexin 1 activation and inhibition is permeantâ€selective. Journal of Physiology, 2020, 598, 361-379.	2.9	31
2	Quantitative proteomics characterization of acutely isolated primary adult rat cardiomyocytes and fibroblasts. Journal of Molecular and Cellular Cardiology, 2020, 143, 63-70.	1.9	9
3	Structural determinants underlying permeant discrimination of the Cx43 hemichannel. Journal of Biological Chemistry, 2019, 294, 16789-16803.	3.4	15
4	Acute intramyocardial lipid accumulation in rats does not slow cardiac conduction per se. Physiological Reports, 2019, 7, e14049.	1.7	1
5	Modulating cardiac conduction during metabolic ischemia with perfusate sodium and calcium in guinea pig hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H849-H861.	3.2	25
6	Probenecid Inhibits α-Adrenergic Receptor–Mediated Vasoconstriction in the Human Leg Vasculature. Hypertension, 2018, 71, 151-159.	2.7	32
7	Connexins and Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029348.	5.5	73
8	Protein–Protein Interactions with Connexin 43: Regulation and Function. International Journal of Molecular Sciences, 2018, 19, 1428.	4.1	75
9	Uremia increases QRS duration after <i>β</i> -adrenergic stimulation in mice. Physiological Reports, 2018, 6, e13720.	1.7	6
10	T-type Ca ²⁺ channels and autoregulation of local blood flow. Channels, 2017, 11, 183-195.	2.8	9
11	Connexin Hemichannels in Astrocytes: An Assessment of Controversies Regarding Their Functional Characteristics. Neurochemical Research, 2017, 42, 2537-2550.	3.3	30
12	Permeant-specific gating of connexin 30 hemichannels. Journal of Biological Chemistry, 2017, 292, 19999-20009.	3.4	19
13	Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nature Communications, 2017, 8, 1696.	12.8	88
14	Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length: Application to Human PIEZO1-Channels. Frontiers in Neuroinformatics, 2017, 11, 31.	2.5	17
15	Sphingosine-1-phosphate reduces ischaemia–reperfusion injury by phosphorylating the gap junction protein Connexin43. Cardiovascular Research, 2016, 109, 385-396.	3.8	55
16	Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels. Biochemical Society Transactions, 2015, 43, 519-523.	3.4	16
17	Isoform-specific phosphorylation-dependent regulation of connexin hemichannels. Journal of Neurophysiology, 2015, 114, 3014-3022.	1.8	13
18	Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis. Cardiovascular Diabetology, 2015, 14, 87.	6.8	45

Morten Schak Nielsen

#	Article	IF	CITATIONS
19	Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium. Journal of Cardiovascular Pharmacology, 2015, 66, 165-176.	1.9	27
20	Gap junctions–guards of excitability. Biochemical Society Transactions, 2015, 43, 508-512.	3.4	19
21	Sympathetic vasoconstriction takes an unexpected pannexin detour. Science Signaling, 2015, 8, fs4.	3.6	4
22	Activation, Permeability, and Inhibition of Astrocytic and Neuronal Large Pore (Hemi)channels. Journal of Biological Chemistry, 2014, 289, 26058-26073.	3.4	45
23	Distinct permeation profiles of the connexin 30 and 43 hemichannels. FEBS Letters, 2014, 588, 1446-1457.	2.8	55
24	Myocardial impulse propagation is impaired in right ventricular tissue of Zucker Diabetic Fatty (ZDF) rats. Cardiovascular Diabetology, 2013, 12, 19.	6.8	26
25	Managing the complexity of communication: regulation of gap junctions by post-translational modification. Frontiers in Pharmacology, 2013, 4, 130.	3.5	97
26	Lateralized gap junctions in pulmonary hypertension: Lost but not alone. Heart Rhythm, 2012, 9, 1141-1142.	0.7	0
27	Gap Junctions. , 2012, 2, 1981-2035.		331
28	Estimation of the effective intercellular diffusion coefficient in cell monolayers coupled by gap junctions. European Journal of Pharmaceutical Sciences, 2012, 46, 222-232.	4.0	4
29	Angiotensin II does not acutely regulate conduction velocity in rat atrial tissue. Scandinavian Journal of Clinical and Laboratory Investigation, 2011, 71, 492-499.	1.2	7
30	Norepinephrine inhibits intercellular coupling in rat cardiomyocytes by ubiquitination of connexin43 gap junctions. Cell Communication and Adhesion, 2011, 18, 57-65.	1.0	20
31	The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling. Regulatory Peptides, 2011, 167, 21-25.	1.9	17
32	Quantification of gap junctional intercellular communication based on digital image analysis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R243-R247.	1.8	8
33	Phosphorylation of connexin43 on serine 306 regulates electrical coupling. Heart Rhythm, 2009, 6, 1632-1638.	0.7	54
34	Myocyte-fibroblast interactions—Risky connections. Heart Rhythm, 2009, 6, 1650-1651.	0.7	2
35	Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes. Pflugers Archiv European Journal of Physiology, 2008, 457, 303-313.	2.8	18
36	Connexin mimetic peptides fail to inhibit vascular conducted calcium responses in renal arterioles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R840-R847.	1.8	19

MORTEN SCHAK NIELSEN

#	Article	IF	CITATION
37	RXP-E. Circulation Research, 2008, 103, 519-526.	4.5	38
38	Synopsis of the International Gap Junction Conference in Elsinore, Denmark August 5—9, 2007. Cell Communication and Adhesion, 2007, 14, 251-257.	1.0	0
39	KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 764-773.	4.1	21
40	Increasing Gap Junctional Coupling: A Tool for Dissecting the Role of Gap Junctions. Journal of Membrane Biology, 2007, 216, 23-35.	2.1	18
41	Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). Journal of Molecular and Cellular Cardiology, 2006, 40, 790-798.	1.9	118
42	Treatment With the Gap Junction Modifier Rotigaptide (ZP123) Reduces Infarct Size in Rats With Chronic Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2006, 47, 236-242.	1.9	34
43	Myocardial infarction does not change Angiotensin II sensitivity of rat atria. FASEB Journal, 2006, 20, LB12.	0.5	0
44	The Antiarrhythmic Peptide Analog ZP123 Prevents Atrial Conduction Slowing During Metabolic Stress. Journal of Cardiovascular Electrophysiology, 2005, 16, 537-545.	1.7	65
45	ZP123 Increases Gap Junctional Conductance and Prevents Reentrant Ventricular Tachycardia During Myocardial Ischemia in Open Chest Dogs. Journal of Cardiovascular Electrophysiology, 2003, 14, 510-520.	1.7	130
46	KCNE5 Induces Time- and Voltage-Dependent Modulation of the KCNQ1 Current. Biophysical Journal, 2002, 83, 1997-2006.	0.5	98
47	Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Archiv European Journal of Physiology, 2001, 442, 1-11.	2.8	33