
Jian-Bing Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable, Malleable, and Recyclable Castor Oil-Derived Poly(urethane urea) Networks with Tunable Mechanical Properties and Shape Memory Performance Based on Dynamic Piperazine–Urea Bonds. Macromolecules, 2022, 55, 2243-2251.	4.8	50
2	Biobased mussel-inspired underwater superoleophobic chitosan derived complex hydrogel coated cotton fabric for oil/water separation. International Journal of Biological Macromolecules, 2022, 209, 279-289.	7.5	21
3	Biobased covalent adaptable networks: towards better sustainability of thermosets. Green Chemistry, 2022, 24, 4363-4387.	9.0	67
4	Castor oil-derived sustainable poly(urethane urea) covalent adaptable networks with tunable mechanical properties and multiple recyclability based on reversible piperidine-urea bond. Chemical Engineering Journal, 2022, 446, 137071.	12.7	41
5	Dynamic crosslinking towards well-dispersed cellulose nanofiber reinforced epoxy vitrimer composites. Composites Communications, 2022, 33, 101228.	6.3	12
6	Fabrication of sustainable and durable superwetting cotton fabrics with plant polyphenol for on-demand oil/water separation. Industrial Crops and Products, 2022, 186, 115264.	5.2	17
7	Malleable and thermally recyclable polyurethane foam. Green Chemistry, 2021, 23, 307-313.	9.0	51
8	Dynamic Crosslinking: An Efficient Approach to Fabricate Epoxy Vitrimer. Materials, 2021, 14, 919.	2.9	13
9	Biobased High-Performance Epoxy Vitrimer with UV Shielding for Recyclable Carbon Fiber Reinforced Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 4638-4647.	6.7	133
10	Sustainable and malleable polyurethane networks from castor oil and vanillin with tunable mechanical properties. Industrial Crops and Products, 2021, 174, 114198.	5.2	40
11	Biobased epoxy vitrimer from epoxidized soybean oil for reprocessable and recyclable carbon fiber reinforced composite. Composites Communications, 2020, 22, 100445.	6.3	96
12	Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. ACS Sustainable Chemistry and Engineering, 2020, 8, 15020-15029.	6.7	140
13	Highly Stretchable, Recyclable, and Fast Room Temperature Self-Healable Biobased Elastomers Using Polycondensation. Macromolecules, 2020, 53, 9847-9858.	4.8	65
14	Highly toughened and heat resistant poly(l-lactide)/poly(ε-caprolactone) blends via engineering balance between kinetics and thermodynamics of phasic morphology with stereocomplex crystallite. Composites Part B: Engineering, 2020, 197, 108155.	12.0	27
15	Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation. Carbohydrate Polymers, 2020, 244, 116449.	10.2	94
16	Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Industrial Crops and Products, 2020, 153, 112576.	5.2	96
17	Fully Sustainable, Nanoparticle-Free, Fluorine-Free, and Robust Superhydrophobic Cotton Fabric Fabricated via an Eco-Friendly Method for Efficient Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15696-15705.	6.7	86
18	Malleable and Sustainable Poly(ester amide) Networks Synthesized via Melt Condensation Polymerization. ACS Sustainable Chemistry and Engineering, 2019, 7, 15147-15153.	6.7	66

#	Article	IF	CITATIONS
19	Fully biobased polylactide/epoxidized soybean oil resin blends with balanced stiffness and toughness by dynamic vulcanization. Polymer Testing, 2019, 78, 105981.	4.8	13
20	Toward durable and robust superhydrophobic cotton fabric through hydrothermal growth of ZnO for oil/water separation. Cellulose, 2019, 26, 8121-8133.	4.9	32
21	Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation. International Journal of Biological Macromolecules, 2019, 140, 1175-1182.	7.5	21
22	Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios. Polymer Testing, 2019, 79, 106057.	4.8	17
23	Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation. Cellulose, 2019, 26, 2861-2872.	4.9	50
24	Highly toughened and heat-resistant poly(l-lactide) materials through interfacial interaction control via chemical structure of biodegradable elastomer. Applied Surface Science, 2019, 483, 1090-1100.	6.1	29
25	Localization control of carbon nanotubes in immiscible polylactide/vulcanized epoxidized soybean oil blends. Composites Communications, 2019, 11, 6-11.	6.3	15
26	Relating Chemical Structure to Toughness via Morphology Control in Fully Sustainable Sebacic Acid Cured Epoxidized Soybean Oil Toughened Polylactide Blends. Macromolecules, 2018, 51, 2027-2037.	4.8	141
27	Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties. Polymer, 2018, 143, 79-86.	3.8	65
28	Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening. Science China Materials, 2018, 61, 993-1000.	6.3	26
29	Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation. Polymer Testing, 2018, 66, 41-47.	4.8	84
30	Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability. Chinese Journal of Polymer Science (English Edition), 2018, 36, 641-648.	3.8	49
31	Uniform fiber orientation and transcrystallization formed in isotactic polypropylene/short glass fiber composites via a shearâ€induced orientation extrusion. Polymer Composites, 2018, 39, 3168-3177.	4.6	8
32	Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers. Polymer Testing, 2018, 72, 140-146.	4.8	26
33	Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydrate Polymers, 2018, 199, 390-396.	10.2	109
34	Castor oil-based high performance and reprocessable poly(urethane urea) network. Polymer Testing, 2018, 70, 174-179.	4.8	43
35	Structure, morphology, and properties of LDPE/sepiolite nanofiber nanocomposite. Polymers for Advanced Technologies, 2017, 28, 958-964.	3.2	9
36	Morphology and isothermal crystallization of graphene oxide reinforced biodegradable poly(butylene succinate). Polymer Testing, 2017, 59, 1-9.	4.8	19

#	Article	IF	CITATIONS
37	Ultralow Percolation Threshold in Poly(<scp>l</scp> -lactide)/Poly(ε-caprolactone)/Multiwall Carbon Nanotubes Composites with a Segregated Electrically Conductive Network. Journal of Physical Chemistry C, 2017, 121, 3087-3098.	3.1	83
38	Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(<scp>l</scp> -lactide)/poly(lµ-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. Journal of Materials Chemistry C, 2017, 5, 2807-2817.	5.5	144
39	Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydrate Polymers, 2017, 164, 75-82.	10.2	59
40	Curing of epoxidized soybean oil with crystalline oligomeric poly(butylene succinate) towards high performance and sustainable epoxy resins. Chemical Engineering Journal, 2017, 326, 875-885.	12.7	93
41	Progress in Toughening Poly(Lactic Acid) with Renewable Polymers. Polymer Reviews, 2017, 57, 557-593.	10.9	172
42	High Performance and Thermal Processable Dicarboxylic Acid Cured Epoxidized Plant Oil Resins through Dynamic Vulcanization with Poly(lactic acid). ACS Sustainable Chemistry and Engineering, 2017, 5, 1938-1947.	6.7	51
43	Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polymer Testing, 2017, 57, 281-287.	4.8	74
44	Fully bio-based, highly toughened and heat-resistant poly(L-lactide) ternary blends via dynamic vulcanization with poly(D-lactide) and unsaturated bioelastomer. Science China Materials, 2017, 60, 1008-1022.	6.3	26
45	Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11440-11450.	6.7	110
46	All Plant Oil Derived Epoxy Thermosets with Excellent Comprehensive Properties. Macromolecules, 2017, 50, 5729-5738.	4.8	84
47	Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(<scp>l</scp> -lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. Journal of Materials Chemistry C, 2017, 5, 9359-9369.	5.5	322
48	Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly(butylene succinate) nanocomposites with low percolation threshold. Polymer Testing, 2016, 50, 182-190.	4.8	56
49	Dynamic vulcanization of castor oil in a polylactide matrix for toughening. RSC Advances, 2016, 6, 79542-79553.	3.6	51
50	Formation of thermally conductive networks in isotactic polypropylene/hexagonal boron nitride composites via "Bridge Effect―of multi-wall carbon nanotubes and graphene nanoplatelets. RSC Advances, 2016, 6, 98571-98580.	3.6	29
51	Control of the Crystalline Morphology of Poly(<scp>l</scp> -lactide) by Addition of High-Melting-Point Poly(<scp>l</scp> -lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2016, 120, 7423-7437.	2.6	40
52	Magnetic Responsive Polymer Nanocomposites with <i>In–situ</i> Tunable Anisotropy by Magnetic Selfâ€Organization. ChemistrySelect, 2016, 1, 5542-5546.	1.5	6
53	Enhancement of the interfacial interaction between poly(vinyl chloride) and zinc oxide modified reduced graphene oxide. RSC Advances, 2016, 6, 5784-5791.	3.6	37
54	Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene. Journal of Materials Science, 2016, 51, 5185-5195.	3.7	34

24

#	Article	IF	CITATIONS
55	Effect of baseâ€deposited graphene oxide on the thermal stabilization of poly(vinyl chloride). Polymer International, 2016, 65, 125-132.	3.1	10
56	Crystallization Behavior of Poly(sodium 4-styrenesulfonate)-Functionalized Carbon Nanotubes Filled Poly(ε-caprolactone) Nanocomposites. Industrial & Engineering Chemistry Research, 2016, 55, 1881-1889.	3.7	14
57	Synthesis, characterization and isothermal crystallization behavior of poly(butylene) Tj ETQq1 1 0.784314 rgBT / Technologies, 2015, 26, 1003-1013.	Overlock 3.2	10 Tf 50 667 15
58	Fabrication of hierarchically crystallographic morphologies in isotactic polypropylene. Journal of Applied Polymer Science, 2015, 132, .	2.6	6
59	Synthesis and characterization of a polyurethane ionene/zinc chloride complex with antibacterial properties. RSC Advances, 2015, 5, 12423-12433.	3.6	9
60	Biobased Thermoplastic Poly(ester urethane) Elastomers Consisting of Poly(butylene succinate) and Poly(propylene succinate). Industrial & Engineering Chemistry Research, 2015, 54, 6258-6268.	3.7	14
61	Properties regulation of poly(butylene succinate) ionomers through their ionic group distribution. Polymer, 2015, 66, 148-159.	3.8	15
62	Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances, 2015, 5, 32546-32565.	3.6	216
63	Poly(sodium 4-styrenesulfonate) modified graphene for reinforced biodegradable poly(ε-caprolactone) nanocomposites. RSC Advances, 2015, 5, 73146-73154.	3.6	24
64	Succinic Acid Based Biodegradable Thermoplastic Poly(ester urethane) Elastomers: Effects of Segment Ratios and Lengths on Physical Properties. Industrial & Engineering Chemistry Research, 2014, 53, 1404-1414.	3.7	20
65	Composition dependence of physical properties of biodegradable poly(ethylene succinate) urethane ionenes. RSC Advances, 2014, 4, 54175-54186.	3.6	13
66	In situ formed crosslinked polyurethane toughened polylactide. Polymer Chemistry, 2014, 5, 2530.	3.9	129
67	Fully Biobased and Supertough Polylactide-Based Thermoplastic Vulcanizates Fabricated by Peroxide-Induced Dynamic Vulcanization and Interfacial Compatibilization. Biomacromolecules, 2014, 15, 4260-4271.	5.4	178
68	Super-tough poly(<scp>l</scp> -lactide)/crosslinked polyurethane blends with tunable impact toughness. RSC Advances, 2014, 4, 12857-12866.	3.6	83
69	Sustainable waterborne polyurethane ionomer reinforced poly(vinyl alcohol) composite films. Composites Science and Technology, 2014, 96, 109-115.	7.8	17
70	Nonisothermal crystallization behaviors of biodegradable double crystalline poly(butylene) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.6	Tf ₂ 50 142 To
71	Synthesis and characterization of segmented poly(butylene succinate) urethane ionenes containing secondary amine cation. Polymer, 2014, 55, 4358-4368.	3.8	41

⁷²Block phosphorus-containing poly(trimethylene terephthalate) copolyester via solid-state
polymerization: retarded crystallization and melting behaviour. CrystEngComm, 2013, 15, 2688.2.6

#	Article	IF	CITATIONS
73	Crystallization and morphology of a polymer blend based on linear PPDO and branched poly(p-dioxanone)–poly(lactic acid) block copolymer with immiscible blocks. Polymer Chemistry, 2012, 3, 2537.	3.9	11
74	Urethane Ionic Groups Induced Rapid Crystallization of Biodegradable Poly(ethylene succinate). ACS Macro Letters, 2012, 1, 965-968.	4.8	42
75	From miscible to partially miscible biodegradable double crystalline poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 ⁻ 3.9	Tf 50 662 1
76	Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance. Polymer Chemistry, 2012, 3, 800.	3.9	58
77	Isothermal Crystallization Behavior of Biodegradable P(BS-b-PEGS) Multiblock Copolymers. Industrial & Engineering Chemistry Research, 2012, 51, 8262-8272.	3.7	20
78	Aromatic-aliphatic random and block copolyesters: synthesis, sequence distribution and thermal properties. Polymer Chemistry, 2012, 3, 1344.	3.9	31
79	Chitin Whiskers: An Overview. Biomacromolecules, 2012, 13, 1-11.	5.4	374
80	Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Materials Chemistry and Physics, 2011, 130, 943-949.	4.0	46
81	A novel aromatic–aliphatic copolyester consisting of poly(1,4â€dioxanâ€2â€one) and poly(ethyleneâ€ <i>co</i> â€1,6â€hexene terephthalate): Preparation, thermal, and mechanical properties. Journal of Polymer Science Part A, 2010, 48, 2828-2837.	2.3	13
82	Rapid ringâ€opening polymerization of 1,4â€dioxanâ€2â€one initiated by titanium alkoxides. Journal of Polymer Science Part A, 2010, 48, 5885-5890.	2.3	20
83	Unique Crystalline/Crystalline Polymer Blends of Poly(ethylene succinate) and Poly(<i>p</i> -dioxanone): Miscibility and Crystallization Behaviors. Journal of Physical Chemistry B, 2010, 114, 14827-14833.	2.6	78
84	Non-isothermal Crystallization Behaviors of Poly(<i>p</i> -dioxanone) and Poly(<i>p</i> -dioxanone)- <i>b</i> -poly(butylene succinate) Multiblock Copolymer from Amorphous State. Journal of Macromolecular Science - Physics, 2010, 49, 269-285.	1.0	9
85	Synthesis of highâ€molecularâ€weight aliphatic–aromatic copolyesters from poly(ethyleneâ€ <i>co</i> â€1,6â€hexene terephthalate) and poly(<scp>L</scp> â€lactic acid) by chain extension. Journal of Polymer Science Part A, 2009, 47, 5898-5907.	2.3	25
86	A novel biodegradable multiblock poly(ester urethane) containing poly(l-lactic acid) and poly(butylene succinate) blocks. Polymer, 2009, 50, 1178-1186.	3.8	166
87	Thermal and Thermo-Oxidative Degradation of Biodegradable Poly(Ester Urethane) Containing Poly(L-Lactic Acid) and Poly(Butylene Succinate) Blocks. Journal of Macromolecular Science - Physics, 2009, 48, 635-649.	1.0	11
88	ABA triblock copolymers from poly(p-dioxanone) and poly(ethylene glycol). Journal of Applied Polymer Science, 2006, 102, 1092-1097.	2.6	16