Liang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045674/publications.pdf

Version: 2024-02-01

236925 254184 2,056 44 25 43 h-index citations g-index papers 45 45 45 3100 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Balancing oxygen evolution reaction and oxygen reduction reaction processes in Li–O2 batteries through tuning the bond distances of RuO2. Composites Part B: Engineering, 2022, 234, 109727.	12.0	5
2	Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nature Communications, 2021, 12, 4895.	12.8	40
3	A bimetallic nanocatalyst for light-free oxygen sensitization therapy. Cell Reports Physical Science, 2021, 2, 100538.	5 . 6	2
4	Photoexcited NO ₂ Enables Accelerated Response and Recovery Kinetics in Light-Activated NO ₂ Gas Sensing. ACS Sensors, 2021, 6, 4389-4397.	7.8	11
5	RuCoO _{<i>x</i>} Nanofoam as a High-Performance Trifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries and Water Splitting. Nano Letters, 2021, 21, 9633-9641.	9.1	49
6	Kinetic interactions between H2 and CO in catalytic oxidation over PdO. Combustion and Flame, 2020, 211, 270-280.	5.2	16
7	MXene Materials for the Electrochemical Nitrogen Reduction—Functionalized or Not?. ACS Catalysis, 2020, 10, 253-264.	11.2	107
8	Composition-Dependent Oxygen Reduction Reaction Activity of Pt-Surfaced PtNi Dodecahedral Nanoframes. ACS Applied Energy Materials, 2020, 3, 768-776.	5.1	20
9	Role of Undercoordinated Sites for the Catalysis in Confined Spaces Formed by Two-Dimensional Material Overlayers. Journal of Physical Chemistry Letters, 2020, 11, 9400-9407.	4.6	4
10	High Cycling Stability for Solidâ€State Li Metal Batteries via Regulating Solvation Effect in Poly(Vinylidene Fluoride)â€Based Electrolytes. Batteries and Supercaps, 2020, 3, 876-883.	4.7	84
11	Reversible Electrochemical Gelation of Metal Chalcogenide Quantum Dots. Journal of the American Chemical Society, 2020, 142, 12207-12215.	13.7	35
12	Reviving Inert Oxides for Electrochemical Water Splitting by Subsurface Engineering. Chemistry of Materials, 2020, 32, 5569-5578.	6.7	11
13	Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111). Nano Research, 2019, 12, 2364-2372.	10.4	4
14	Enhancing Oxygen Exchange Activity by Tailoring Perovskite Surfaces. Journal of Physical Chemistry Letters, 2019, 10, 4082-4088.	4.6	23
15	Molybdenum Trioxide (α-MoO ₃) Nanoribbons for Ultrasensitive Ammonia (NH ₃) Gas Detection: Integrated Experimental and Density Functional Theory Simulation Studies. ACS Applied Materials & Description of the Modern of t	8.0	174
16	Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). Journal of Chemical Physics, 2019, 150, 041731.	3.0	14
17	Ultrasensitive ammonia (NH3) gas sensor: DFT Simulation-Directed Selection of High-Performance Metal-Doped Molybdenum Tri-oxide (ݱ-MoO3) Nanoribbons for NH3 Detection. , 2019, , .		1
18	Activation of ultrathin SrTiO ₃ with subsurface SrRuO ₃ for the oxygen evolution reaction. Energy and Environmental Science, 2018, 11, 1762-1769.	30.8	83

#	Article	IF	CITATIONS
19	The effect of single pd atoms on the energetics of recombinative O2 desorption from Au(111). Surface Science, 2018, 677, 296-300.	1.9	20
20	Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts. Nanoscale, 2017, 9, 5244-5253.	5.6	28
21	Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions. Journal of Chemical Physics, 2016, 145, 244708.	3.0	22
22	Efficient CO Oxidation Using Dendrimer-Encapsulated Pt Nanoparticles Activated with <2% Cu Surface Atoms. ACS Nano, 2016, 10, 8760-8769.	14.6	39
23	Microwave-Assisted Synthesis of Pd _{<i>x</i>} Au _{100â€"<i>x</i>} Alloy Nanoparticles: A Combined Experimental and Theoretical Assessment of Synthetic and Compositional Effects upon Catalytic Reactivity. ACS Catalysis, 2016, 6, 4882-4893.	11.2	54
24	A Theoretical and Experimental In-Situ Electrochemical Infrared Spectroscopy Study of Adsorbed CO on Pt Dendrimer-Encapsulated Nanoparticles. Journal of the Electrochemical Society, 2016, 163, H3061-H3065.	2.9	10
25	Distributed replica dynamics. Journal of Chemical Physics, 2015, 143, 174112.	3.0	1
26	Ridge-based bias potentials to accelerate molecular dynamics. Journal of Chemical Physics, 2015, 143, 244104.	3.0	7
27	Effect of annealing in oxygen on alloy structures of Pd–Au bimetallic model catalysts. Physical Chemistry Chemical Physics, 2015, 17, 20588-20596.	2.8	23
28	Unusual Activity Trend for CO Oxidation on Pd _{<i>x</i>} Au _{140–<i>x</i>} @Pt Core@Shell Nanoparticle Electrocatalysts. Journal of Physical Chemistry Letters, 2015, 6, 2562-2568.	4.6	18
29	Control of selectivity in allylic alcohol oxidation on gold surfaces: the role of oxygen adatoms and hydroxyl species. Physical Chemistry Chemical Physics, 2015, 17, 4730-4738.	2.8	22
30	A Theoretical and Experimental Approach for Correlating Nanoparticle Structure and Electrocatalytic Activity. Accounts of Chemical Research, 2015, 48, 1351-1357.	15.6	78
31	Oxygen Activation and Reaction on Pd–Au Bimetallic Surfaces. Journal of Physical Chemistry C, 2015, 119, 11754-11762.	3.1	57
32	Correlating Structure and Function of Metal Nanoparticles for Catalysis. Surface Science, 2015, 640, 65-72.	1.9	35
33	Computational Design of Alloy-Core@Shell Metal Nanoparticle Catalysts. ACS Catalysis, 2015, 5, 655-660.	11.2	39
34	EON: software for long time simulations of atomic scale systems. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 055002.	2.0	58
35	Microwave Synthesis of Classically Immiscible Rhodium–Silver and Rhodium–Gold Alloy Nanoparticles: Highly Active Hydrogenation Catalysts. ACS Nano, 2014, 8, 11512-11521.	14.6	118
36	Oxygen and Hydroxyl Species Induce Multiple Reaction Pathways for the Partial Oxidation of Allyl Alcohol on Gold. Journal of the American Chemical Society, 2014, 136, 6489-6498.	13.7	37

#	Article	IF	CITATION
37	CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO ₂ (111). Journal of Physical Chemistry Letters, 2013, 4, 2943-2947.	4.6	80
38	An Experimental and Theoretical Investigation of the Inversion of Pd@Pt Core@Shell Dendrimer-Encapsulated Nanoparticles. ACS Nano, 2013, 7, 9345-9353.	14.6	75
39	Design of Pt-Shell Nanoparticles with Alloy Cores for the Oxygen Reduction Reaction. ACS Nano, 2013, 7, 9168-9172.	14.6	141
40	Efficient Electrocatalytic Oxidation of Formic Acid Using Au@Pt Dendrimer-Encapsulated Nanoparticles. Journal of the American Chemical Society, 2013, 135, 5521-5524.	13.7	103
41	A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chemical Science, 2013, 4, 2912.	7.4	63
42	Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores. Journal of Physical Chemistry C, 2012, 116, 20860-20865.	3.1	58
43	Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory. Chemical Science, 2012, 3, 1033.	7.4	56
44	Catalytic Activity of Pd/Cu Random Alloy Nanoparticles for Oxygen Reduction. Journal of Physical Chemistry Letters, 2011, 2, 1328-1331.	4.6	131