
Patrik Forrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045235/publications.pdf Version: 2024-02-01

DATDIK FODDED

#	Article	IF	CITATIONS
1	Thermostable designed ankyrin repeat proteins (DARPins) as building blocks for innovative drugs. Journal of Biological Chemistry, 2022, 298, 101403.	3.4	17
2	Half-life extension using serum albumin-binding DARPin® domains. Protein Engineering, Design and Selection, 2017, 30, 583-591.	2.1	56
3	Accelerated dissociation of IgE-FcÎμRI complexes by disruptive inhibitors actively desensitizes allergic effector cells. Journal of Allergy and Clinical Immunology, 2014, 133, 1709-1719.e8.	2.9	122
4	Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis, 2013, 16, 101-111.	7.2	61
5	Her2-specific Multivalent Adapters Confer Designed Tropism to Adenovirus for Gene Targeting. Journal of Molecular Biology, 2011, 405, 410-426.	4.2	56
6	Efficient Selection of DARPins with Sub-nanomolar Affinities using SRP Phage Display. Journal of Molecular Biology, 2008, 382, 1211-1227.	4.2	236
7	Isolation of Intracellular Proteinase Inhibitors Derived from Designed Ankyrin Repeat Proteins by Genetic Screening. Journal of Biological Chemistry, 2006, 281, 40252-40263.	3.4	43
8	Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nature Biotechnology, 2006, 24, 823-831.	17.5	191
9	Allosteric Inhibition of Aminoglycoside Phosphotransferase by a Designed Ankyrin Repeat Protein. Structure, 2005, 13, 1131-1141.	3.3	78
10	NMR solution structure of the monomeric form of the bacteriophage λ capsid stabilizing protein gpD. Journal of Biomolecular NMR, 2005, 31, 351-356.	2.8	16
11	Intracellular Kinase Inhibitors Selected from Combinatorial Libraries of Designed Ankyrin Repeat Proteins. Journal of Biological Chemistry, 2005, 280, 24715-24722.	3.4	115
12	High-affinity binders selected from designed ankyrin repeat protein libraries. Nature Biotechnology, 2004, 22, 575-582.	17.5	598
13	Letter to the Editor: Assignments of1H and15N resonances of the bacteriophage λ capsid stabilizing protein gpD. Journal of Biomolecular NMR, 2004, 28, 89-90.	2.8	3
14	Consensus Design of Repeat Proteins. ChemBioChem, 2004, 5, 183-189.	2.6	96
15	Kinetic Stability and Crystal Structure of the Viral Capsid Protein SHP. Journal of Molecular Biology, 2004, 344, 179-193.	4.2	36
16	PDZK1: I. A major scaffolder in brush borders of proximal tubular cells11See Editorial by Moe, p. 1916 Kidney International, 2003, 64, 1733-1745.	5.2	168
17	Designing Repeat Proteins: Well-expressed, Soluble and Stable Proteins from Combinatorial Libraries of Consensus Ankyrin Repeat Proteins. Journal of Molecular Biology, 2003, 332, 489-503.	4.2	510
18	Designing Repeat Proteins: Modular Leucine-rich Repeat Protein Libraries Based on the Mammalian Ribonuclease Inhibitor Family. Journal of Molecular Biology, 2003, 332, 471-487.	4.2	123

PATRIK FORRER

#	Article	IF	CITATIONS
19	A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Letters, 2003, 539, 2-6.	2.8	127
20	Designed to be stable: Crystal structure of a consensus ankyrin repeat protein. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1700-1705.	7.1	262
21	In vitro display technologies: novel developments and applications. Current Opinion in Biotechnology, 2001, 12, 400-405.	6.6	173
22	Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nature Structural Biology, 2000, 7, 230-237.	9.7	140
23	High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage Lambda head protein D. Gene, 1998, 224, 45-52.	2.2	72
24	Enzyme-Linked Immunosorbent Assay for Measurement of JNK, ERK, and p38 Kinase Activities. Biological Chemistry, 1998, 379, 1101-1112.	2.5	41