
Julie A Wixey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045111/publications.pdf Version: 2024-02-01

ΙΠΠΕ Δ \λ/ιχεν

#	Article	IF	CITATIONS
1	Combined hypothermia and mesenchymal stem cells in animal models of neonatal hypoxic–ischaemic encephalopathy: a systematic review. Pediatric Research, 2022, 92, 25-31.	2.3	3
2	Neurovascular Unit Alterations in the Growth-Restricted Newborn Are Improved Following Ibuprofen Treatment. Molecular Neurobiology, 2022, 59, 1018-1040.	4.0	8
3	Stem Cell Therapy for Neuroprotection in the Growth-Restricted Newborn. Stem Cells Translational Medicine, 2022, 11, 372-382.	3.3	4
4	Brain outcomes in runted piglets: a translational model of fetal growth restriction. Developmental Neuroscience, 2022, , .	2.0	1
5	Electroencephalographic studies in growth-restricted and small-for-gestational-age neonates. Pediatric Research, 2022, 92, 1527-1534.	2.3	4
6	Editorial: Pathomechanisms and Treatments to Protect the Preterm, Fetal Growth Restricted and Neonatal Encephalopathic Brain. Frontiers in Neurology, 2021, 12, 755617.	2.4	1
7	Improving brain outcomes in the growth restricted newborn: treating after birth. Neural Regeneration Research, 2021, 16, 978.	3.0	0
8	Combination of human endothelial colony-forming cells and mesenchymal stromal cells exert neuroprotective effects in the growth-restricted newborn. Npj Regenerative Medicine, 2021, 6, 75.	5.2	7
9	Hypoxia-ischemia in the immature rodent brain impairs serotonergic neuronal function in certain dorsal raphé nuclei. Neural Regeneration Research, 2020, 15, 457.	3.0	4
10	Accuracy of Transient Elastography Data Combined With APRI in Detection and Staging of Liver Disease in Pediatric Patients With Cystic Fibrosis. Clinical Gastroenterology and Hepatology, 2019, 17, 2561-2569.e5.	4.4	45
11	Ibuprofen Treatment Reduces the Neuroinflammatory Response and Associated Neuronal and White Matter Impairment in the Growth Restricted Newborn. Frontiers in Physiology, 2019, 10, 541.	2.8	26
12	Neuropathology in intrauterine growth restricted newborn piglets is associated with glial activation and proinflammatory status in the brain. Journal of Neuroinflammation, 2019, 16, 5.	7.2	42
13	Disruption to the 5-HT7 Receptor Following Hypoxia–Ischemia in the Immature Rodent Brain. Neurochemical Research, 2018, 43, 711-720.	3.3	6
14	Therapeutic potential to reduce brain injury in growth restricted newborns. Journal of Physiology, 2018, 596, 5675-5686.	2.9	14
15	Seizures Are Associated with Blood-Brain Barrier Disruption in a Piglet Model of Neonatal Hypoxic-Ischaemic Encephalopathy. Developmental Neuroscience, 2018, 40, 560-575.	2.0	11
16	GABAAreceptor expression and white matter disruption in intrauterine growth restricted piglets. International Journal of Developmental Neuroscience, 2017, 59, 1-9.	1.6	20
17	Review: Neuroinflammation in intrauterine growth restriction. Placenta, 2017, 54, 117-124.	1.5	64
18	Targeting inflammation to reduce brain injury in growth restricted newborns: A potential treatment?. Neural Regeneration Research, 2017, 12, 1804.	3.0	0

JULIE A WIXEY

#	Article	IF	CITATIONS
19	Transient liver elastography in unsedated control children: Impact of age and intercurrent illness. Journal of Paediatrics and Child Health, 2016, 52, 637-642.	0.8	26
20	Neonatal hypoxia–ischaemia disrupts descending neural inputs to dorsal raphé nuclei. Neuroscience, 2013, 248, 427-435.	2.3	11
21	Disruption of the Serotonergic System after Neonatal Hypoxia-Ischemia in a Rodent Model. Neurology Research International, 2012, 2012, 1-12.	1.3	16
22	Post-insult Ibuprofen Treatment Attenuates Damage to the Serotonergic System After Hypoxia-Ischemia in the Immature Rat Brain. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1137-1148.	1.7	19
23	Disruption of raphé serotonergic neural projections to the cortex: a potential pathway contributing to remote loss of brainstem neurons following neonatal hypoxic–ischemic brain injury. European Journal of Neuroscience, 2012, 36, 3483-3491.	2.6	11
24	Evidence that the serotonin transporter does not shift into the cytosol of remaining neurons after neonatal brain injury. Neuroscience Research, 2012, 73, 252-256.	1.9	6
25	Efficacy of post-insult minocycline administration to alter long-term hypoxia-ischemia-induced damage to the serotonergic system in the immature rat brain. Neuroscience, 2011, 182, 184-192.	2.3	42
26	Inhibition of Neuroinflammation Prevents Injury to the Serotonergic Network After Hypoxia-Ischemia in the Immature Rat Brain. Journal of Neuropathology and Experimental Neurology, 2011, 70, 23-35.	1.7	30
27	Ibuprofen inhibits neuroinflammation and attenuates white matter damage following hypoxia–ischemia in the immature rodent brain. Brain Research, 2011, 1402, 9-19.	2.2	45
28	Differential effects of neonatal hypoxic–ischemic brain injury on brainstem serotonergic raphe nuclei. Brain Research, 2010, 1322, 124-133.	2.2	20
29	Long-term losses of amygdala corticotropin-releasing factor neurons are associated with behavioural outcomes following neonatal hypoxia-ischemia. Behavioural Brain Research, 2010, 208, 609-618.	2.2	28
30	Delayed P2X4R expression after hypoxia–ischemia is associated with microglia in the immature rat brain. Journal of Neuroimmunology, 2009, 212, 35-43.	2.3	53
31	Minocycline: A neuroprotective agent for hypoxicâ€ischemic brain injury in the neonate?. Journal of Neuroscience Research, 2009, 87, 599-608.	2.9	64
32	Postâ€insult minocycline treatment attenuates hypoxiaâ€ischemiaâ€induced neuroinflammation and white matter injury in the neonatal rat: a comparison of two different dose regimens. International Journal of Developmental Neuroscience, 2008, 26, 477-485.	1.6	105
33	Selective Losses of Brainstem Catecholamine Neurons After Hypoxia-Ischemia in the Immature Rat Pup. Pediatric Research, 2008, 63, 364-369.	2.3	34
34	Expression of MBP, PLP, MAG, CNP, and GFAP in the Human Alcoholic Brain. Alcoholism: Clinical and Experimental Research, 2005, 29, 1698-1705.	2.4	52
35	Role of MC1R variants in uveal melanoma. British Journal of Cancer, 2003, 89, 1961-1965.	6.4	14
36	Contribution of Germline Mutations inBRCA2,P16INK4A,P14ARFandP15to Uveal Melanoma. , 2003, 44, 458.		63

JULIE A WIXEY

#	Article	IF	CITATIONS
37	Analysis of the CTLA4 Gene in Swedish Coeliac Disease Patients. Scandinavian Journal of Gastroenterology, 2002, 37, 28-31.	1.5	33
38	Increased Expression of Neuronal Glucose Transporter 3 but Not Glial Glucose Transporter 1 Following Severe Diffuse Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2001, 18, 1011-1018.	3.4	58
39	A Comprehensive Analysis of <i>MNG1</i> , <i>TCO1</i> , <i>fPTC</i> , <i>PTEN</i> , <i>TSHR</i> , and TRKA in Familial Nonmedullary Thyroid Cancer: Confirmation of Linkage to TCO1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3701-3704.	3.6	69
40	A Comprehensive Analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in Familial Nonmedullary Thyroid Cancer: Confirmation of Linkage to TCO1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3701-3704.	3.6	29