
Michael R Buchmeiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/704501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homogeneous Metathesis Polymerization by Well-Defined Group VI and Group VIII Transition-Metal Alkylidenes:Â Fundamentals and Applications in the Preparation of Advanced Materials. Chemical Reviews, 2000, 100, 1565-1604.	47.7	769
2	Carbon Fibers: Precursor Systems, Processing, Structure, and Properties. Angewandte Chemie - International Edition, 2014, 53, 5262-5298.	13.8	697
3	Carbon Fibers: Precursors, Manufacturing, and Properties. Macromolecular Materials and Engineering, 2012, 297, 493-501.	3.6	336
4	Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 2011, 23, 5024-5028.	6.7	323
5	Polymer-Supported Well-Defined Metathesis Catalysts. Chemical Reviews, 2009, 109, 303-321.	47.7	294
6	Polymeric monolithic materials: Syntheses, properties, functionalization and applications. Polymer, 2007, 48, 2187-2198.	3.8	235
7	1,3-Dialkyl- and 1,3-Diaryl-3,4,5,6-tetrahydropyrimidin-2-ylidene Rhodium(i) and Palladium(II) Complexes: Synthesis, Structure, and Reactivity. Chemistry - A European Journal, 2004, 10, 1256-1266.	3.3	230
8	Access to Well-Defined Heterogeneous Catalytic Systems via Ring-Opening Metathesis Polymerization (ROMP):Â Applications in Palladium(II)-Mediated Coupling Reactions. Journal of the American Chemical Society, 1999, 121, 11101-11107.	13.7	192
9	Novel Metathesis Catalysts Based on Ruthenium 1,3-Dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidenes: Synthesis, Structure, Immobilization, and Catalytic Activity. Chemistry - A European Journal, 2004, 10, 5761-5770.	3.3	173
10	Synthesis and Reactivity of Homogeneous and Heterogeneous Ruthenium-Based Metathesis Catalysts Containing Electron-Withdrawing Ligands. Chemistry - A European Journal, 2004, 10, 777-784.	3.3	166
11	A New Class of Continuous Polymer Supports Prepared by Ring-Opening Metathesis Polymerization:Â A Straightforward Route to Functionalized Monoliths. Macromolecules, 2000, 33, 5777-5786.	4.8	156
12	Monolithic Materials: New High-Performance Supports for Permanently Immobilized Metathesis Catalysts. Angewandte Chemie - International Edition, 2001, 40, 3839-3842.	13.8	154
13	Bis(pyrimidine)-based palladium catalysts: synthesis, X-ray structure and applications in Heck–, Suzuki–, Sonogashira–Hagihara couplings and amination reactions. Journal of Organometallic Chemistry, 2001, 634, 39-46.	1.8	153
14	Simple Synthesis of Poly(acetylene) Latex Particles in Aqueous Media. Angewandte Chemie - International Edition, 2003, 42, 5965-5969.	13.8	151
15	New synthetic ways for the preparation of high-performance liquid chromatography supports. Journal of Chromatography A, 2001, 918, 233-266.	3.7	150
16	Ring-Opening Metathesis Polymerization for the Preparation of Surface-Grafted Polymer Supports. Macromolecules, 2000, 33, 32-39.	4.8	135
17	Recent advances in the synthesis of supported metathesis catalysts. New Journal of Chemistry, 2004, 28, 549.	2.8	133
18	Novel Ruthenium-Based Metathesis Catalysts Containing Electron- Withdrawing Ligands:Â Synthesis, Immobilization, and Reactivity. Journal of Organic Chemistry, 2005, 70, 4687-4694.	3.2	128

#	Article	IF	CITATIONS
19	Dipyridyl Amide-Functionalized Polymers Prepared by Ring-Opening-Metathesis Polymerization (ROMP) for the Selective Extraction of Mercury and Palladium. Journal of the American Chemical Society, 1998, 120, 2790-2797.	13.7	122
20	CO ₂ and Sn ^{II} Adducts of Nâ€Heterocyclic Carbenes as Delayedâ€Action Catalysts for Polyurethane Synthesis. Chemistry - A European Journal, 2009, 15, 3103-3109.	3.3	121
21	Alternating Copolymerizations Using a Grubbsâ€īype Initiator with an Unsymmetrical, Chiral Nâ€Heterocyclic Carbene Ligand. Angewandte Chemie - International Edition, 2008, 47, 2615-2618.	13.8	118
22	CO ₂ , Magnesium, Aluminum, and Zinc Adducts of Nâ€Heterocyclic Carbenes as (Latent) Catalysts for Polyurethane Synthesis. European Journal of Inorganic Chemistry, 2009, 2009, 1970-1976.	2.0	116
23	Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Letters, 2017, 2, 595-604.	17.4	116
24	Factors Relevant for the Ruthenium–Benzylidene-Catalyzed Cyclopolymerization of 1,6-Heptadyines. Chemistry - A European Journal, 2004, 10, 2029-2035.	3.3	108
25	Synthesis of Polyenes That Contain Metallocenes via the Living Polymerization of Ethynylferrocene and Ethynylruthenocene. Macromolecules, 1995, 28, 6642-6649.	4.8	107
26	Ring-Opening-Metathesis Polymerization for the Preparation of Carboxylic-Acid-Functionalized, High-Capacity Polymers for Use in Separation Techniques. Journal of the American Chemical Society, 1997, 119, 9166-9174.	13.7	106
27	Hydrophobic, Pellicular, Monolithic Capillary Columns Based on Cross-Linked Polynorbornene for Biopolymer Separations. Analytical Chemistry, 2002, 74, 6080-6087.	6.5	103
28	On-Line Cation Exchange for Suppression of Adduct Formation in Negative-Ion Electrospray Mass Spectrometry of Nucleic Acids. Analytical Chemistry, 1998, 70, 5288-5295.	6.5	102
29	Heterogenization of a Modified Grubbs–Hoveyda Catalyst on a ROMP-Derived Monolithic Support. Macromolecular Rapid Communications, 2003, 24, 875-878.	3.9	101
30	Liberation of N-heterocyclic carbenes (NHCs) from thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization catalysis. Catalysis Science and Technology, 2014, 4, 2466-2479.	4.1	101
31	N-Acyl-N,N-dipyridyl and N-acyl-N-pyridyl-N-quinoyl amine based palladium complexes. Synthesis, X-ray structures, heterogenization and use in Heck couplings. Journal of Organometallic Chemistry, 2001, 622, 6-18.	1.8	100
32	Conversion of Perhydropolysilazane into a SiO _{<i>x</i>} Network Triggered by Vacuum Ultraviolet Irradiation: Access to Flexible, Transparent Barrier Coatings. Chemistry - A European Journal, 2007, 13, 8522-8529.	3.3	96
33	Ring-Opening Metathesis Polymerization (ROMP) in Ionic Liquids:  Scope and Limitations. Macromolecules, 2006, 39, 7821-7830.	4.8	94
34	Fine-Tuning of Molybdenum Imido Alkylidene Complexes for the Cyclopolymerization of 1,6-Heptadiynes To Give Polyenes Containing Exclusively Five-Membered Rings. Macromolecules, 2002, 35, 9029-9038.	4.8	93
35	UV curing and matting of acrylate coatings reinforced by nano-silica and micro-corundum particles. Progress in Organic Coatings, 2007, 60, 121-126.	3.9	91
36	Cationic Ru ^{II} Complexes with Nâ€Heterocyclic Carbene Ligands for UVâ€Induced Ringâ€Opening Metathesis Polymerization. Angewandte Chemie - International Edition, 2008, 47, 3267-3270.	13.8	91

#	Article	IF	CITATIONS
37	Factors Relevant for the Regioselective Cyclopolymerization of 1,6-Heptadiynes, N,N-Dipropargylamines, N,N-Dipropargylammonium Salts, and Dipropargyl Ethers by RuIVâ ^{°^} Alkylidene-Based Metathesis Initiators. Journal of the American Chemical Society, 2009, 131, 387-395.	13.7	88
38	Metathesis-Based Monoliths:Â Influence of Polymerization Conditions on the Separation of Biomolecules. Analytical Chemistry, 2001, 73, 4071-4078.	6.5	87
39	Nano/Micro Particle Hybrid Composites for Scratch and Abrasion Resistant Polyacrylate Coatings. Macromolecular Materials and Engineering, 2006, 291, 493-498.	3.6	83
40	Cationic Silicaâ€&upported Nâ€Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis. Angewandte Chemie - International Edition, 2016, 55, 4300-4302.	13.8	83
41	Latent and Delayed Action Polymerization Systems. Macromolecular Rapid Communications, 2014, 35, 682-701.	3.9	81
42	Nâ€Heterocyclic Carbene, High Oxidation State Molybdenum Alkylidene Complexes: Functionalâ€Groupâ€Tolerant Cationic Metathesis Catalysts. Angewandte Chemie - International Edition, 2014, 53, 9384-9388.	13.8	81
43	Cationic Tungsten-Oxo-Alkylidene-N-Heterocyclic Carbene Complexes: Highly Active Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2015, 137, 6188-6191.	13.7	81
44	Rechargeable Magnesium–Sulfur Battery Technology: State of the Art and Key Challenges. Advanced Functional Materials, 2019, 29, 1905248.	14.9	80
45	Living Polymerization of Novel Conjugatively Spaced Ferrocenylacetylenes. Macromolecules, 1998, 31, 3175-3183.	4.8	79
46	Correlation of the electrochemistry of poly(acrylonitrile)–sulfur composite cathodes with their molecular structure. Journal of Materials Chemistry, 2012, 22, 23240.	6.7	79
47	Ceramic Filament Fibers – A Review. Macromolecular Materials and Engineering, 2012, 297, 502-522.	3.6	77
48	Alternating Ringâ€Opening Metathesis Copolymerization by Grubbsâ€Type Initiators with Unsymmetrical Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2009, 15, 9451-9457.	3.3	76
49	Stereospecific Ring-Opening Metathesis Polymerization (ROMP) of <i>endo</i> -Dicyclopentadiene by Molybdenum and Tungsten Catalysts. Macromolecules, 2015, 48, 2480-2492.	4.8	75
50	Stereoselective Cyclopolymerization of 1,6-Heptadiynes: Access to Alternating cis-trans-1,2-(Cyclopent-1-enylene)vinylenes by Fine-Tuning of Molybdenum Imidoalkylidenes. Angewandte Chemie - International Edition, 2002, 41, 4044-4047.	13.8	74
51	Processing of Cellulose Using Ionic Liquids. Macromolecular Materials and Engineering, 2019, 304, 1800450.	3.6	73
52	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
53	N-heterocyclic carbene complexes of Zn(II): synthesis, X-ray structures and reactivity. Journal of Organometallic Chemistry, 2004, 689, 2123-2130.	1.8	68
54	Cyclopolymerization of <i>N</i> , <i>N</i> -Dipropargylamines and <i>N</i> , <i>N</i> -Dipropargyl Ammonium Salts. Macromolecules, 2008, 41, 1919-1928.	4.8	67

#	Article	IF	CITATIONS
55	Protected N-heterocyclic carbenes as latent pre-catalysts for the polymerization of Îμ-caprolactone. Polymer Chemistry, 2013, 4, 4172.	3.9	67
56	Access to silica- and monolithic polymer supported Cî—,C-coupling catalysts via ROMP: applications in high-throughput screening, reactor technology and biphasic catalysis. Inorganica Chimica Acta, 2003, 345, 145-153.	2.4	65
57	Rapid Screening of New Polymer-Supported Palladium(II) Bis(3,4,5,6-tetrahydropyrimidin-2-ylidenes). Macromolecular Rapid Communications, 2004, 25, 231-236.	3.9	64
58	Pseudo-Halide and Nitrate Derivatives of Grubbs and Grubbs–Hoveyda Initiators: Some Structural Features Related to the Alternating Ring-Opening Metathesis Copolymerization of Norborn-2-ene with Cyclic Olefins. Macromolecules, 2011, 44, 4098-4106.	4.8	63
59	Catalysts Immobilized on Organic Polymeric Monolithic Supports: From Molecular Heterogeneous Catalysis to Biocatalysis. ChemCatChem, 2012, 4, 30-44.	3.7	63
60	Conductive Polymer Electrolytes Derived from Poly(norbornene)s with Pendant Ionic Imidazolium Moieties. Macromolecular Chemistry and Physics, 2008, 209, 40-51.	2.2	62
61	ZnOâ€Based UV Nanocomposites for Wood Coatings in Outdoor Applications. Macromolecular Materials and Engineering, 2010, 295, 130-136.	3.6	61
62	Olefin Metathesis in Confined Geometries: A Biomimetic Approach toward Selective Macrocyclization. Journal of the American Chemical Society, 2019, 141, 19014-19022.	13.7	60
63	Synthesis of Polyenes That Contain Mesogenic Side Chains via the Living Polymerization of 4-(Ferrocenylethynyl)-4â€~-ethynyltolanâ€. Macromolecules, 1997, 30, 2274-2277.	4.8	59
64	Metathesis-Based Monolithic Supports: Synthesis, Functionalization and Applications. Macromolecular Rapid Communications, 2001, 22, 1081.	3.9	59
65	High Energy Density Poly(acrylonitrile)-Sulfur Composite-Based Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A1169-A1170.	2.9	59
66	Neutral and Cationic Molybdenum Imido Alkylidene Nâ€Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica. Chemistry - A European Journal, 2015, 21, 13778-13787.	3.3	59
67	Multifilament cellulose/chitin blend yarn spun from ionic liquids. Carbohydrate Polymers, 2015, 131, 34-40.	10.2	59
68	Copper (I) 1,3-R2-3,4,5,6-tetrahydropyrimidin-2-ylidenes (R=mesityl, 2-propyl): synthesis, X-ray structures, immobilization and catalytic activity. Tetrahedron, 2005, 61, 12145-12152.	1.9	58
69	Polymerâ€6upported, Carbon Dioxideâ€Protected Nâ€Heterocyclic Carbenes: Synthesis and Application in Organo―and Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 917-928.	4.3	58
70	Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths. Journal of Chromatography A, 2010, 1217, 3223-3230.	3.7	57
71	Molybdenum Imido Alkylidene Nâ€Heterocyclic Carbene Complexes: Structure–Productivity Correlations and Mechanistic Insights. ChemCatChem, 2016, 8, 2710-2723.	3.7	57
72	ROMP-Based, Highly Hydrophilic Poly(7-oxanorborn-2-ene-5,6-dicarboxylic acid)-Coated Silica for Analytical and Preparative Scale High-Performance Ion Chromatography. Chemistry of Materials, 1999, 11, 1533-1540.	6.7	56

#	Article	IF	CITATIONS
73	UV curing and matting of acrylate nanocomposite coatings by 172 nm excimer irradiation. Progress in Organic Coatings, 2009, 64, 474-481.	3.9	56
74	Visible Light-Induced Grafting from Polyolefins. Macromolecules, 2013, 46, 6395-6401.	4.8	55
75	Micropreparative fractionation of DNA fragments on metathesis-based monoliths: influence of stoichiometry on separation. Journal of Chromatography A, 2002, 959, 121-129.	3.7	54
76	Access to Heterogeneous Atom-Transfer Radical Polymerization (ATRP) Catalysts Based on Dipyridylamine and Terpyridine via Ring-Opening Metathesis Polymerization (ROMP). Macromolecular Chemistry and Physics, 2001, 202, 645-653.	2.2	53
77	Rh(1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) tetrafluoroborate, an unsymmetrical Rh-homoazallylcarbene: synthesis, X-ray structure and reactivity in carbonyl arylation and hydrosilylation reactions. Journal of Organometallic Chemistry, 2005, 690, 4433-4440.	1.8	52
78	Stereoselective Cyclopolymerization of Polar 1,6-Heptadiynes by Novel, Tailor-Made Ruthenium-Based Metathesis Catalysts. Macromolecular Rapid Communications, 2005, 26, 784-790.	3.9	51
79	Monolithic Media Prepared Via Electron Beam Curing for Proteins Separation and Flow-Through Catalysis. Macromolecular Chemistry and Physics, 2007, 208, 1428-1436.	2.2	51
80	Ringâ€Opening Metathesis Polymerization Based Poreâ€Sizeâ€Selective Functionalization of Glycidyl Methacrylate Based Monolithic Media: Access to Sizeâ€Stable Nanoparticles for Ligandâ€Free Metal Catalysis. Chemistry - A European Journal, 2010, 16, 4650-4658.	3.3	51
81	A Dicationic Ruthenium Alkylidene Complex for Continuous Biphasic Metathesis Using Monolithâ€Supported Ionic Liquids. Chemistry - A European Journal, 2012, 18, 14069-14078.	3.3	51
82	Polymerization of methyl methacrylate by latent pre-catalysts based on CO2-protected N-heterocyclic carbenes. Polymer Chemistry, 2013, 4, 2731.	3.9	51
83	Monolithic High-Performance SEC Supports Prepared by ROMP for High-Throughput Screening of Polymers. Macromolecular Rapid Communications, 2002, 23, 617.	3.9	50
84	Cationic versus Neutral Ru ^{II} Nâ€Heterocyclic Carbene Complexes as Latent Precatalysts for the UVâ€Induced Ringâ€Opening Metathesis Polymerization. Chemistry - A European Journal, 2010, 16, 12928-12934.	3.3	50
85	Polymeric monolith supported Pt-nanoparticles as ligand-free catalysts for olefinhydrosilylation under batch and continuous conditions. Catalysis Science and Technology, 2012, 2, 220-226.	4.1	50
86	Polymerization of Îμ-Caprolactam by Latent Precatalysts Based on Protected N-Heterocyclic Carbenes. ACS Macro Letters, 2013, 2, 609-612.	4.8	50
87	Electron Beamâ€Based Functionalization of Poly(ethersulfone) Membranes. Macromolecular Rapid Communications, 2010, 31, 467-472.	3.9	49
88	Tailored Ring-Opening Metathesis Polymerization Derived Monolithic Media Prepared from Cyclooctene-Based Monomers and Cross-Linkers. Macromolecules, 2006, 39, 5222-5229.	4.8	48
89	Highly crossâ€linked polymeric capillary monoliths for the separation of low, medium, and high molecular weight analytes. Journal of Separation Science, 2009, 32, 2521-2529.	2.5	48
90	Synthesis of zirconia toughened alumina (ZTA) fibers for high performance materials. Journal of the European Ceramic Society, 2016, 36, 725-731.	5.7	48

#	Article	IF	CITATIONS
91	A New Approach to High-Capacity Functionalized Monoliths via Post-Synthesis Grafting. Macromolecular Rapid Communications, 2003, 24, 580-584.	3.9	47
92	First Controlled Cyclopolymerization of Diethyl Dipropargylmalonate by MoCl5â^'n-Bu4Snâ^'EtOHâ^'Quinuclidine and MoOCl4â ''n-Bu4Snâ^'EtOHâ^'Quinuclidine To Give Highly Regular Polyenes Consisting Exclusively of 1,2-(Cyclopent-1-enylene)â^'Vinylene Units. Macromolecules, 2003, 36, 2668-2673.	4.8	47
93	Capped-Tetrahedrally Coordinated Fe(II) and Co(II) Complexes Using a "Click―Derived Tripodal Ligand: Geometric and Electronic Structures. Inorganic Chemistry, 2012, 51, 7592-7597.	4.0	46
94	Phosphonate-based resins for the selective enrichment of uranium(VI). Analytica Chimica Acta, 1999, 402, 91-97.	5.4	45
95	Homologous Poly(isobutylene)s: Poly(isobutylene)/High-Density Poly(ethylene) Hybrid Polymers. Macromolecules, 2008, 41, 8405-8412.	4.8	45
96	Molybdenum Imido Alkylidene Complexes Containing N- and C-Chelating N-Heterocyclic Carbenes. Organometallics, 2016, 35, 4106-4111.	2.3	44
97	A ROMP-derived, polymer-supported chiral Schrock catalyst for enantioselective ring-closing olefin metathesis. Chemical Communications, 2003, , 2742-2743.	4.1	43
98	Bi- and Trinuclear Ruthenium Alkylidene Triggered Cyclopolymerization of 1,6-Heptadiynes:Â Access to Anâ^'Xâ^'AnBlock and (An)3X Tristar Copolymers. Macromolecules, 2006, 39, 3484-3493.	4.8	43
99	Celluloseâ€Derived Carbon Fibers with Improved Carbon Yield and Mechanical Properties. Macromolecular Materials and Engineering, 2017, 302, 1700195.	3.6	43
100	Polymerization of phenylacetylene by novel Rh (I)-, Ir (I)- and Ru (IV) 1,3-R2-3,4,5,6-tetrahydropyrimidin-2-ylidenes (R=mesityl, 2-propyl): Influence of structure on activity and polymer structure. Journal of Organometallic Chemistry, 2005, 690, 5728-5735.	1.8	42
101	Ruâ^'Alkylidene Metathesis Catalysts Based on 1,3-Dimesityl-4,5,6,7-tetrahydro-1,3-diazepin-2-ylidenes: Synthesis, Structure, and Activity. Organometallics, 2009, 28, 1785-1790.	2.3	42
102	Air Stable and Latent Single-Component Curing of Epoxy/Anhydride Resins Catalyzed by Thermally Liberated <i>N</i> -Heterocyclic Carbenes. Macromolecules, 2014, 47, 4548-4556.	4.8	42
103	Stereoselective Ring-Opening Metathesis Polymerization with Molybdenum Imido Alkylidenes Containing O-Chelating N-Heterocyclic Carbenes: Influence of <i>Syn</i> / <i>Anti</i> Interconversion and Polymerization Rates on Polymer Structure. Macromolecules, 2017, 50, 5701-5710.	4.8	42
104	Selective Extraction of Rare-Earth Elements from Rocks Using a High-Capacity cis-1,4-Butanedioic Acid-Functionalized Resin. Analytical Chemistry, 1998, 70, 2130-2136.	6.5	41
105	Stereoselective Cyclopolymerization of Diynes: Smart Materials for Electronics and Sensors. Macromolecular Symposia, 2004, 217, 179-190.	0.7	41
106	Carbon Fibers Prepared from Melt Spun Peracylated Softwood Lignin: an Integrated Approach. Macromolecular Materials and Engineering, 2017, 302, 1600441.	3.6	41
107	Molybdenum Imido, Tungsten Imido and Tungsten Oxo Alkylidene Nâ€Heterocyclic Carbene Olefin Metathesis Catalysts. Chemistry - A European Journal, 2018, 24, 14295-14301.	3.3	41
108	Synthesis of water-soluble homo- and block-copolymers by RAFT polymerization under Î ³ -irradiation in aqueous media. Polymer, 2010, 51, 4319-4328.	3.8	40

#	Article	IF	CITATIONS
109	Anionic Ring-Opening Homo- and Copolymerization of Lactams by Latent, Protected N-Heterocyclic Carbenes for the Preparation of PA 12 and PA 6/12. Macromolecules, 2013, 46, 8426-8433.	4.8	40
110	Ionic Liquid Approach Toward Manufacture and Full Recycling of All ellulose Composites. Macromolecular Materials and Engineering, 2018, 303, 1700335.	3.6	40
111	Determination of airborne, volatile amines from polyurethane foams by sorption onto a high-capacity cation-exchange resin based on poly(succinic acid). Journal of Chromatography A, 1998, 809, 121-129.	3.7	39
112	Promoting Terminal Olefin Metathesis with a Supported Cationic Molybdenum Imido Alkylidene Nâ€Heterocyclic Carbene Catalyst. Angewandte Chemie - International Edition, 2018, 57, 14566-14569.	13.8	39
113	Cathode materials for lithium–sulfur batteries based on sulfur covalently bound to a polymeric backbone. Journal of Materials Chemistry A, 2020, 8, 5379-5394.	10.3	39
114	Group 6 metal alkylidene and alkylidyne N-heterocyclic carbene complexes for olefin and alkyne metathesis. Coordination Chemistry Reviews, 2020, 415, 213315.	18.8	39
115	Application of imidazolinium salts and N-heterocyclic olefins for the synthesis of anionic and neutral tungsten imido alkylidene complexes. Chemical Communications, 2016, 52, 6099-6102.	4.1	38
116	Highly Productive and Enantioselective Enzyme Catalysis under Continuous Supported Liquid–Liquid Conditions Using a Hybrid Monolithic Bioreactor. ChemSusChem, 2016, 9, 2917-2921.	6.8	38
117	Carbon fibers prepared from ionic liquid-derived cellulose precursors. Materials Today Communications, 2016, 7, 1-10.	1.9	38
118	High Oxidation State Molybdenum <i>N</i> â€Heterocyclic Carbene Alkylidyne Complexes: Synthesis, Mechanistic Studies, and Reactivity. Chemistry - A European Journal, 2017, 23, 15484-15490.	3.3	38
119	Mechanism of Olefin Metathesis with Neutral and Cationic Molybdenum Imido Alkylidene <i>N-</i> Heterocyclic Carbene Complexes. Journal of the American Chemical Society, 2019, 141, 8264-8276.	13.7	38
120	New Ways to Porous Monolithic Materials with Uniform Pore Size Distribution. Angewandte Chemie - International Edition, 2001, 40, 3795-3797.	13.8	37
121	Evaluation of ring-opening metathesis polymerization (ROMP)-derived monolithic capillary high performance liquid chromatography columns. Journal of Chromatography A, 2005, 1090, 81-89.	3.7	37
122	Quantification of Lanthanides in Rocks Using Succinic Acid-Derivatized Sorbents for On-Line SPE-RP-Ion-Pair HPLC. Analytical Chemistry, 2000, 72, 2595-2602.	6.5	36
123	Hydroformylation of 1-octene using rhodium-1,3-R2-3,4,5,6-tetrahydropyrimidin-2-ylidenes (R=2-Pr,) Tj ETQq1 1 C).784314 r 4.8	ˈgɟɟ̯͡ /Overloo
124	Ring-opening metathesis polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Journal of Chromatography A, 2008, 1191, 274-281.	3.7	36
125	VUV-induced micro-folding of acrylate-based coatings. Surface and Coatings Technology, 2009, 203, 1844-1849.	4.8	36
126	Carbon fibers prepared from tailored reversibleâ€additionâ€fragmentation transfer copolymerizationâ€derived poly(acrylonitrile)â€ <i>co</i> â€poly(methylmethacrylate). Journal of Polymer Science Part A, 2014, 52, 1322-1333.	2.3	36

#	Article	IF	CITATIONS
127	Surfaceâ€functionalization of plasmaâ€treated polystyrene by hyperbranched polymers and use in biological applications. Journal of Applied Polymer Science, 2009, 112, 2701-2709.	2.6	35
128	First Neutral and Cationic Tungsten Imido Alkylidene <i>N</i> â€Heterocyclic Carbene Complexes. ChemCatChem, 2017, 9, 2996-3002.	3.7	35
129	Dendritic polarizing agents for DNP SENS. Chemical Science, 2017, 8, 416-422.	7.4	35
130	Synthesis of trans-Isotactic Poly(norbornene)s through Living Ring-Opening Metathesis Polymerization Initiated by Group VI Imido Alkylidene N-Heterocyclic Carbene Complexes. Macromolecules, 2019, 52, 4059-4066.	4.8	35
131	Poly(cyclooctene)-based monolithic columns for capillary high performance liquid chromatography prepared via ring-opening metathesis polymerization. Journal of Chromatography A, 2006, 1132, 124-131.	3.7	34
132	Polyethylene-g-poly(cyclohexene oxide) by Mechanistic Transformation from ROMP to Visible Light-Induced Free Radical Promoted Cationic Polymerization. Macromolecules, 2015, 48, 1658-1663.	4.8	34
133	Monolithic Polymers for Cell Cultivation, Differentiation, and Tissue Engineering. Angewandte Chemie - International Edition, 2008, 47, 9138-9141.	13.8	33
134	Mechanism of the Regio- and Stereoselective Cyclopolymerization of 1,6-Hepta- and 1,7-Octadiynes by High Oxidation State Molybdenum–Imidoalkylidene <i>N</i> -Heterocyclic Carbene Initiators. Macromolecules, 2015, 48, 4768-4778.	4.8	33
135	New, high-capacity carboxylic acid functionalized resins for solid-phase extraction of a broad range of organic compounds. Journal of Chromatography A, 1997, 786, 259-268.	3.7	32
136	Stereoselektive Cyclopolymerisation von 1,6-Heptadiinen: Zugang zu alternierenden cis-trans-1,2-(Cyclopent-1-enylen)vinylenen durch optimierte MolybdÃ ¤ -Imidoalkyliden-Initiatoren. Angewandte Chemie, 2002, 114, 4226-4230.	2.0	32
137	Heterogeneous C–C coupling and polymerization catalysts prepared by ROMP. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1837-1840.	2.2	32
138	Novel Ruthenium(II) N-Heterocyclic Carbene Complexes as Catalyst Precursors for the Ring-Opening Metathesis Polymerization (ROMP) of Enantiomerically Pure Monomers: X-ray Structures, Reactivity, and Quantum Chemical Considerations. European Journal of Inorganic Chemistry, 2007, 2007, 3988-4000.	2.0	32
139	Ringâ€Opening Metathesis Polymerization Based Post‣ynthesis Functionalization of Electron Beam Curing Derived Monolithic Media. Macromolecular Rapid Communications, 2007, 28, 2090-2094.	3.9	32
140	Stationary phases for chromatography prepared by ring opening metathesis polymerization. Journal of Separation Science, 2008, 31, 1907-1922.	2.5	32
141	Effect of changes of the coating thickness on the in-line monitoring of the conversion of photopolymerized acrylate coatings by near-infrared reflection spectroscopy. Polymer, 2009, 50, 1895-1900.	3.8	32
142	Recent Advances in the Regio- and Stereospecific Cyclopolymerization of α,ω-Diynes by Tailored Ruthenium Alkylidenes and Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Polymer Reviews, 2017, 57, 15-30.	10.9	32
143	Differences in Electrochemistry between Fibrous SPAN and Fibrous S/C Cathodes Relevant to Cycle Stability and Capacity. Journal of the Electrochemical Society, 2018, 165, A6017-A6020.	2.9	32
144	Polymerization of Enantiomerically Pureexo-N-(Norborn-2-ene-5-carboxyl)-L-phenylalanine Ethyl Ester andendo,endo-N,N-(Norborn-5-ene-2,3-dicarbimido)-L-valine Ethyl Ester Using Novel Ruthenium 1,3-Dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidenes. Macromolecular Rapid Communications, 2005, 26, 1757-1762.	3.9	31

#	Article	IF	CITATIONS
145	Metathesis Polymerization To and From Surfaces. , 0, , 137-171.		31
146	Ringâ€Opening Metathesis Polymerizationâ€Derived Materials for Separation Science, Heterogeneous Catalysis and Tissue Engineering. Macromolecular Symposia, 2010, 298, 17-24.	0.7	31
147	Molybdenum and Tungsten Imido Alkylidene Nâ€Heterocyclic Carbene Catalysts Bearing Cationic Ligands for Use in Biphasic Olefin Metathesis. Chemistry - A European Journal, 2017, 23, 6398-6405.	3.3	31
148	Tailored molybdenum imido alkylidene <i>N</i> â€heterocyclic carbene complexes as latent catalysts for the polymerization of dicyclopentadiene. Journal of Polymer Science Part A, 2017, 55, 3028-3033.	2.3	31
149	Hybrid Li/S Battery Based on Dimethyl Trisulfide and Sulfurized Poly(acrylonitrile). Advanced Sustainable Systems, 2018, 2, 1700144.	5.3	31
150	Origin and Use of Hydroxyl Group Tolerance in Cationic Molybdenum Imido Alkylidene Nâ€Heterocyclic Carbene Catalysts. Angewandte Chemie - International Edition, 2020, 59, 951-958.	13.8	31
151	Ferrocenyl- and ethynyl-substituted fluorenes via addition-elimination reactions and two-electron reductions from fluorenone. Syntheses of heterodinuclear acetylene and fluorenyl complexes. Organometallics, 1993, 12, 2472-2477.	2.3	30
152	Binuclear Schrock-Type Alkylidene-Triggered ROMP and Cyclopolymerization of 1,6-Heptadiynes:Â Access to Homopolymers and ABA-Type Block Copolymers. Macromolecules, 2006, 39, 2452-2459.	4.8	30
153	Novel Initiators for Thermally and UV-Triggered ROMP. Macromolecular Symposia, 2006, 236, 30-37.	0.7	30
154	Vacuumâ€UV Irradiationâ€Based Formation of Methylâ€Siâ€Oâ€Si Networks from Poly(1,1â€Dimethylsilazaneâ€ <i>co</i> â€1â€methylsilazane). Chemistry - A European Journal, 2009, 15, 675-683	3. ^{3.3}	30
155	Isocyanate―and Isothiocyanateâ€Derived Ru ^{IV} â€Based Alkylidenes: Synthesis, Structure, and Activity. Chemistry - an Asian Journal, 2009, 4, 1275-1283.	3.3	30
156	Molybdenum and Tungsten Alkylidyne Complexes Containing Mono-, Bi-, and Tridentate N-Heterocyclic Carbenes. Organometallics, 2019, 38, 4133-4146.	2.3	30
157	New cation-exchange resins with high reversed-phase character for solid-phase extraction of phenols. Journal of Chromatography A, 1998, 810, 43-52.	3.7	29
158	Regioselective Cyclopolymerization of 1,7-Octadiynes. Macromolecules, 2011, 44, 8380-8387.	4.8	29
159	Crystalline and Conductive Poly(3â€hexylthiophene) Fibers. Macromolecular Materials and Engineering, 2012, 297, 123-127.	3.6	29
160	Ionic Grubbs–Hoveyda Complexes for Biphasic Ringâ€Opening Metathesis Polymerization in Ionic Liquids: Access to Low Metal Content Polymers. ChemCatChem, 2014, 6, 191-198.	3.7	29
161	Comparative study on the separation behavior of monolithic columns prepared via ring-opening metathesis polymerization and via electron beam irradiation triggered free radical polymerization for proteins. Journal of Chromatography A, 2008, 1191, 268-273.	3.7	28
162	Cationic Silicaâ€Supported Nâ€Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis. Angewandte Chemie, 2016, 128, 4372-4374.	2.0	28

#	Article	IF	CITATIONS
163	Communication—Influence of Carbonate-Based Electrolyte Composition on Cell Performance of SPAN-Based Lithium-Sulfur-Batteries. Journal of the Electrochemical Society, 2018, 165, A2093-A2095.	2.9	28
164	Design and Application of Amphiphilic Polymeric Supports for Micellar Catalysis. Macromolecular Symposia, 2004, 217, 203-214.	0.7	27
165	Novel Immobilized Hydrosilylation Catalysts Based on Rhodium 1,3-Bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidenes. Monatshefte Für Chemie, 2005, 136, 47-57.	1.8	27
166	Metathesis polymerization-derived monolithic membranes for solid-phase extraction coupled with diffuse reflectance spectroscopy. Journal of Chromatography A, 2006, 1109, 86-91.	3.7	27
167	A Catalyst for the Simultaneous Ringâ€Opening Metathesis Polymerization/Vinyl Insertion Polymerization. Angewandte Chemie - International Edition, 2011, 50, 3566-3571.	13.8	27
168	Polyethylene- <i>g</i> -Polystyrene Copolymers by Combination of ROMP, Mn ₂ (CO) ₁₀ -Assisted TEMPO Substitution and NMRP. ACS Macro Letters, 2016, 5, 946-949.	4.8	27
169	Cationic Group VI Metal Imido Alkylidene <i>N</i> â€Heterocyclic Carbene Nitrile Complexes: Benchâ€Stable, Functionalâ€Groupâ€Tolerant Olefin Metathesis Catalysts. Angewandte Chemie - International Edition, 2021, 60, 1374-1382.	13.8	27
170	Chiral β-cyclodextrin-based polymer supports prepared via ring-opening metathesis graft-polymerization. Journal of Chromatography A, 2001, 907, 47-56.	3.7	26
171	Ruthenium(IV)–Bis(methallyl) Complexes as UV‣atent Initiators for Ringâ€Opening Metathesis Polymerization. ChemCatChem, 2012, 4, 1808-1812.	3.7	26
172	Ruthenium-Triazene Complexes as Latent Catalysts for UV-Induced ROMP. European Journal of Inorganic Chemistry, 2013, 2013, 5462-5468.	2.0	26
173	Functional ROMPâ€Derived Poly(cyclopentene)s. Macromolecular Chemistry and Physics, 2013, 214, 1522-1527.	2.2	26
174	Synergistic effects in the pyrolysis of phosphorus-based flame-retardants: The role of Si- and N-based compounds. Polymer Degradation and Stability, 2016, 130, 155-164.	5.8	26
175	Functional Precision Polymers via Stereo―and Regioselective Polymerization Using Group 6 Metal Alkylidene and Group 6 and 8 Metal Alkylidene <i>N</i> â€Heterocyclic Carbene Complexes. Macromolecular Rapid Communications, 2019, 40, e1800492.	3.9	26
176	Syntheses of intrinsically flameâ€retardant polyamide 6 fibers and fabrics. Journal of Applied Polymer Science, 2019, 136, 47829.	2.6	26
177	Alkyne Metathesis Graft Polymerization:Â Synthesis of Poly(ferricinium)-Based Silica Supports for Anion-Exchange Chromatography of Oligonucleotides. Macromolecules, 2001, 34, 4334-4341.	4.8	25
178	Metathesis polymerization-derived chromatographic supports. Journal of Chromatography A, 2004, 1060, 43-60.	3.7	25
179	Regio- and stereospecific cyclopolymerization of 1,6-heptadiynes and 1,5-hexadiynes. Designed Monomers and Polymers, 2004, 7, 151-163.	1.6	25
180	Selfâ€initiation of the UV photopolymerization of brominated acrylates. Journal of Polymer Science Part A, 2008, 46, 4905-4916.	2.3	25

#	Article	IF	CITATIONS
181	Latent and Airâ€Stable Preâ€Catalysts for the Polymerization of Dicyclopentadiene: From Penta―to Hexacoordination in Molybdenum Imido Alkylidene Nâ€Heterocyclic Carbene Complexes. Chemistry - A European Journal, 2018, 24, 12652-12659.	3.3	25
182	Development of mullite fibers and novel zirconia-toughened mullite fibers for high temperature applications. Journal of the European Ceramic Society, 2021, 41, 3570-3580.	5.7	25
183	Ferrocenyl- and octamethylferrocenyl-substituted phenylenevinylene-, thienylenevinylene-, and 1,1′-ferrocenylenevinylene spaced ethynes: Synthesis, metathesis polymerization, and polymer properties. Designed Monomers and Polymers, 2000, 3, 421-445.	1.6	24
184	Amino-functionalized monolithic spin-type columns for high-throughput lectin affinity chromatography of glycoproteins. Analyst, The, 2012, 137, 2600.	3.5	24
185	Cyclopolymerization-derived block-copolymers of 4,4-bis(octyloxymethyl)-1,6-heptadiyne with 4,4-dipropargyl malonodinitrile for use in photovoltaics. Polymer Chemistry, 2013, 4, 1590-1599.	3.9	24
186	Structure formation in yttrium aluminum garnet (YAG) fibers. Journal of the European Ceramic Society, 2014, 34, 1321-1328.	5.7	24
187	Molybdenum imido alkylidene and tungsten oxo alkylidene N-heterocyclic carbene complexes for olefin metathesis. Monatshefte Für Chemie, 2015, 146, 1037-1042.	1.8	24
188	Supported ionic liquid phase (SILP) facilitated gas-phase enzyme catalysis – CALB catalyzed transesterification of vinyl propionate. Catalysis Science and Technology, 2018, 8, 2460-2466.	4.1	24
189	Influence of morphology of monolithic sulfur–poly(acrylonitrile) composites used as cathode materials in lithium–sulfur batteries on electrochemical performance. RSC Advances, 2019, 9, 7181-7188.	3.6	24
190	57Fe-Mössbauer spectroscopic study of monomeric and polymeric ferrocenyl- and octamethylferrocenyl-substituted ethynes. Journal of Organometallic Chemistry, 2000, 612, 1-8.	1.8	23
191	Polymer-supported polymerization catalystsvia romp. Macromolecular Symposia, 2001, 164, 187-196.	0.7	23
192	Chitin Foils and Coatings Prepared from Ionic Liquids. Macromolecular Materials and Engineering, 2016, 301, 1337-1344.	3.6	23
193	Highâ€Performance Magnesium‣ulfur Batteries Based on a Sulfurated Poly(acrylonitrile) Cathode, a Borohydride Electrolyte, and a High‣urface Area Magnesium Anode. Batteries and Supercaps, 2020, 3, 1239-1247.	4.7	23
194	High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids. Cellulose, 2021, 28, 3055-3067.	4.9	23
195	Novel well-defined heterogeneous metathesis catalysts. Designed Monomers and Polymers, 2002, 5, 325-337.	1.6	22
196	Separation of planar chiral ferrocene derivatives on β-cyclodextrin-based polymer supports prepared via ring-opening metathesis graft-polymerization. Journal of Chromatography A, 2002, 973, 115-122.	3.7	22
197	Influence of chain length and temperature on UV-Vis absorption and degradation behavior of poly(diethyl dipropargylmalonate) with an alternating cis-trans-1,2-(cyclopent-1-enylene)vinylene structure. Designed Monomers and Polymers, 2003, 6, 135-143.	1.6	22
198	Surfaceâ€Functionalized, Ringâ€Opening Metathesis Polymerizationâ€Derived Monoliths for Anionâ€Exchange Chromatography. Macromolecular Rapid Communications, 2007, 28, 2029-2032.	3.9	22

#	Article	IF	CITATIONS
199	Ring-opening metathesis polymerization for the preparation of norbornene-based weak cation-exchange monolithic capillary columns. Journal of Chromatography A, 2009, 1216, 2651-2657.	3.7	22
200	Polymers in Biomedicine and Electronics. Macromolecular Rapid Communications, 2010, 31, 1487-1491.	3.9	22
201	Stereo- and regioselective cyclopolymerization of chiral 1,7-octadiynes. Polymer Chemistry, 2013, 4, 4219.	3.9	22
202	Ringâ€opening metathesis polymerizationâ€derived, lectinâ€functionalized monolithic supports for affinity separation of glycoproteins. Journal of Separation Science, 2013, 36, 1169-1175.	2.5	22
203	Carbon fiber surface modification for tailored fiber-matrix adhesion in the manufacture of C/C-SiC composites. Composites Part A: Applied Science and Manufacturing, 2019, 120, 64-72.	7.6	22
204	Understanding Synthetic Peculiarities of Cationic Molybdenum(VI) Imido Alkylidene N-Heterocyclic Carbene Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 1911-1922.	2.0	22
205	X-ray structural investigations and conformational particularities of ethyne-derived organometallics based on ferrocene and fluorene. Journal of Organometallic Chemistry, 1999, 584, 301-309.	1.8	21
206	Influences of surface chemistry on the separation behavior of stationary phases for reversed-phase and ion-exchange chromatography: a comparison of coated and grafted supports prepared by ring-opening metathesis polymerization. Journal of Chromatography A, 2001, 907, 73-80.	3.7	21
207	Applications of metathesis in heterogeneous catalysis and separation sciences. Journal of Molecular Catalysis A, 2002, 190, 145-158.	4.8	21
208	Towards the Design of New Materials: Regio- and Stereoselective (Cyclo-) Polymerization of 1-Alkynes and 1,6-Heptadiynes. Monatshefte Für Chemie, 2003, 134, 327-342.	1.8	21
209	N-Acetyl-N,N-dipyrid-2-yl (cyclooctadiene) rhodium (I) and iridium (I) complexes: Synthesis, X-ray structures, their use in hydroformylation and carbonyl hydrosilylation reactions and in the polymerization of diazocompounds. Journal of Organometallic Chemistry, 2007, 692, 5272-5278.	1.8	21
210	Monolithic biocompatible and biodegradable scaffolds for tissue engineering. Journal of Polymer Science Part A, 2009, 47, 2219-2227.	2.3	21
211	Groupâ€4 Dimethylsilylenebisamido Complexes Bearing the 6â€{2â€(Diethylboryl)phenyl]pyridâ€2â€yl Motif: Synthesis and Use in Tandem Ringâ€Opening Metathesis/Vinylâ€Insertion Copolymerization of Cyclic Olefins with Ethylene. Chemistry - A European Journal, 2011, 17, 13832-13846.	3.3	21
212	Ring-opening metathesis polymerization-derived monolithic anion exchangers for the fast separation of double-stranded DNA fragments. Journal of Chromatography A, 2011, 1218, 2362-2367.	3.7	21
213	Functional Polyolefins: Poly(ethylene)â€ <i>graft</i> â€Poly(<i>tert</i> â€butyl acrylate) via Atom Transfer Radical Polymerization From a Polybrominated Alkane. Macromolecular Rapid Communications, 2012, 33, 75-79.	3.9	21
214	Reactivity of the Dicationic Ruthenium–Alkylidene Complex [Ru(DMF) ₃ (IMesH ₂)(=CH—2—(2—PrO)—C ₆ H ₄)], <sup in Ringâ€Opening Metathesis and Cyclopolymerization. Macromolecular Chemistry and Physics, 2013, 214, 33-40.</sup 	>> <u>2+</u> <td>)>(BF_{4 21}</td>)>(BF _{4 21}
215	Selective Reduction of CO ₂ with Silanes over Platinum Nanoparticles Immobilised on a Polymeric Monolithic Support under Ambient Conditions. Chemistry - A European Journal, 2014, 20, 3292-3296.	3.3	21
216	Characteristics of magnesium-sulfur batteries based on a sulfurized poly(acrylonitrile) composite	5.2	21

and a fluorinated electrolyte. Electrochimica Acta, 2020, 361, 137024. 216

#	Article	IF	CITATIONS
217	Separation behavior of electronâ€beam curing derived, acrylateâ€based monoliths. Journal of Separation Science, 2007, 30, 2821-2827.	2.5	20
218	In-line determination of the thickness of UV-cured coatings on polymer films by NIR spectroscopy. Vibrational Spectroscopy, 2009, 51, 152-155.	2.2	20
219	Poly(Methyl Vinyl Ketone) as a Potential Carbon Fiber Precursor. Chemistry of Materials, 2017, 29, 780-788.	6.7	20
220	Regio- and Stereoselective Ring-Opening Metathesis Polymerization of Enantiomerically Pure Vince Lactam. Macromolecules, 2018, 51, 2276-2282.	4.8	20
221	Chitin/cellulose blend fibers prepared by wet and <scp>dryâ€wet</scp> spinning. Polymers for Advanced Technologies, 2021, 32, 335-342.	3.2	20
222	Photoinitiated Cationic Polymerization of Cycloaliphatic Epoxide/Vinyl Ether Systems Studied by Near-Infrared Reflection Spectroscopy. Macromolecular Chemistry and Physics, 2007, 208, 946-954.	2.2	19
223	Electron beam triggered, free radical polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 2664-2670.	3.7	19
224	Alternating Ringâ€Opening Metathesis Copolymerization of Norbornâ€2â€ene with <i>cis</i> yclooctene and Cyclopentene. Macromolecular Symposia, 2010, 296, 44-48.	0.7	19
225	Ring-opening metathesis polymerization-derived monolithic strong anion exchangers for the separation of 5′-phosphorylated oligodeoxythymidylic acids fragments. Journal of Chromatography A, 2011, 1218, 8897-8902.	3.7	19
226	A Monolithic Hybrid Celluloseâ€2.5â€Acetate/Polymer Bioreactor for Biocatalysis under Continuous Liquid–Liquid Conditions Using a Supported Ionic Liquid Phase. Chemistry - A European Journal, 2015, 21, 15835-15842.	3.3	19
227	Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i> -Heterocyclic Carbene Complexes: A Combined X-ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach. ACS Catalysis, 2020, 10, 14810-14823.	11.2	19
228	Evaluation of norbornene- β-cyclodextrin-based monomers and oligomers as chiral selectors by means of nonaqueous capillary electrophoresis. Electrophoresis, 2001, 22, 109-116.	2.4	18
229	Postâ€Synthesis Functionalization of (Meth)acrylate Based Monoliths via Electron Beam Triggered Graft Polymerization. Macromolecular Rapid Communications, 2008, 29, 904-909.	3.9	18
230	VUV-induced micro-folding of acrylate-based coatings. Surface and Coatings Technology, 2009, 203, 3734-3740.	4.8	18
231	Ring opening metathesis polymerization-derived block copolymers bearing chelating ligands: synthesis, metal immobilization and use in hydroformylation under micellar conditions. Beilstein Journal of Organic Chemistry, 2010, 6, 28.	2.2	18
232	First Acyclic Diene Metathesis Polymerization Under Biphasic Conditions Using a Dicationic Ruthenium Alkylidene: Access to Highâ€Molecularâ€Weight Polymers with Very Low Ruthenium Contamination. Macromolecular Rapid Communications, 2015, 36, 190-194.	3.9	18
233	Olefin Ringâ€closing Metathesis under Spatial Confinement: Morphologyâ^'Transport Relationships. ChemCatChem, 2021, 13, 281-292.	3.7	18
234	Confinement Effects for Efficient Macrocyclization Reactions with Supported Cationic Molybdenum Imido Alkylidene <i>N</i> -Heterocyclic Carbene Complexes. ACS Catalysis, 2021, 11, 11570-11578.	11.2	18

#	Article	IF	CITATIONS
235	Preparation, Characterization and Applications of Electronâ€Beam Curingâ€Derived Monolithic Materials. Macromolecular Symposia, 2007, 254, 87-92.	0.7	17
236	A Continuous Bioreactor Prepared via the Immobilization of Trypsin on Aldehyde-Functionalized, Ring-Opening Metathesis Polymerization-Derived Monoliths. Macromolecules, 2010, 43, 9601-9607.	4.8	17
237	Cyclopolymerization of N,N- Dipropargyl-3,4-dialkoxyanilines Using Schrock and Grubbs-Hoveyda Initiators: Influence of Initiator Structure on the Mode of Insertion. Macromolecular Chemistry and Physics, 2011, 212, 1999-2008.	2.2	17
238	A new carbon precursor: synthesis and carbonization of triethylammonium-based poly(p-phenylenevinylene) (PPV) progenitors. Journal of Materials Chemistry A, 2013, 1, 13154.	10.3	17
239	Ionically Tagged Ru–Alkylidenes for Metathesis Reactions under Biphasic Liquid–Liquid Conditions. ChemCatChem, 2013, 5, 3033-3040.	3.7	17
240	Silica‣upported Molybdenum Alkylidyne Nâ€Heterocyclic Carbene Catalysts: Relevance of Site Isolation to Catalytic Performance. ChemCatChem, 2018, 10, 1829-1834.	3.7	17
241	Molybdenum Imido Alkylidene <i>N</i> -Heterocyclic Carbene Complexes Containing Pyrrolide Ligands: Access to Catalysts with Sterically Demanding Alkoxides. Organometallics, 2019, 38, 2461-2471.	2.3	17
242	Synthesis of Linear Poly(oxazolidin-2-one)s by Cooperative Catalysis Based on <i>N</i> -Heterocyclic Carbenes and Simple Lewis Acids. Macromolecules, 2019, 52, 487-494.	4.8	17
243	Ringâ€Opening Metathesis Polymerizationâ€Based Synthesis of CaCO ₃ Nanoparticleâ€Reinforced Polymeric Monoliths for Tissue Engineering. Macromolecular Rapid Communications, 2010, 31, 1540-1545.	3.9	16
244	Homopolymerization of Ethylene, 1-Hexene, Styrene and Copolymerization of Styrene With 1,3-Cyclohexadiene Using (h5-Tetramethylcyclopentadienyl)dimethylsilyl(N-Ar')amido-TiCl2/MAO (Ar'=6-(2-(Diethylboryl)phenyl)pyrid-2-yl, Biphen-3-yl). Molecules, 2011, 16, 567-582.	3.8	16
245	Cationic Tungsten Alkylidyne <i>N</i> â€Heterocyclic Carbene Complexes: Synthesis and Reactivity in Alkyne Metathesis. European Journal of Inorganic Chemistry, 2020, 2020, 3070-3082.	2.0	16
246	Vanadium(V) Arylimido Alkylidene N-Heterocyclic Carbene Alkyl and Perhalophenoxy Alkylidenes for the Cis, Syndiospecific Ring Opening Metathesis Polymerization of Norbornene. Organometallics, 2021, 40, 2017-2022.	2.3	16
247	Ultraâ€Stable Cycling of High Capacity Room Temperature Sodiumâ€Sulfur Batteries Based on Sulfurated Poly(acrylonitrile). Batteries and Supercaps, 2021, 4, 1636-1646.	4.7	16
248	Glass-fiber reinforced poly(acrylate)-based sorptive materials for the enrichment of organic micropollutants from aqueous samples. Journal of Chromatography A, 2007, 1138, 1-9.	3.7	15
249	Comparative DFT study on the role of conformers in the ruthenium alkylideneâ€catalyzed ROMP of norbornâ€2â€ene. Journal of Physical Organic Chemistry, 2008, 21, 963-970.	1.9	15
250	Schrock Catalyst Triggered, Ring-Opening Metathesis Polymerization Based Synthesis of Functional Monolithic Materials. Macromolecules, 2009, 42, 3493-3499.	4.8	15
251	Ring-opening metathesis polymerization-derived large-volume monolithic supports for reversed-phase and anion-exchange chromatography of biomolecules. Analyst, The, 2012, 137, 3271.	3.5	15
252	Modification of Polyolefins by Click Chemistry. Macromolecular Chemistry and Physics, 2017, 218, 1700279.	2.2	15

#	Article	IF	CITATIONS
253	Stereoselective Olefin Ringâ€Opening Cross Metathesis Catalyzed by Molybdenum Imido Alkylidene N â€Heterocyclic Carbene Complexes. Advanced Synthesis and Catalysis, 2019, 361, 5596-5604.	4.3	15
254	Highly Reactive Cationic Molybdenum Alkylidyne <i>N</i> -Heterocyclic Carbene Catalysts for Alkyne Metathesis. Organometallics, 2021, 40, 1178-1184.	2.3	15
255	Olefin Metathesis in Confinement: Towards Covalent Organic Framework Scaffolds for Increased Macrocyclization Selectivity. Chemistry - A European Journal, 2022, 28, .	3.3	15
256	Synthesis of (Hexafluoro-tert-butyl)amine and Molybdenum(VI) (Hexafluoro-tert-butyl)imido Complexes. Inorganic Chemistry, 1995, 34, 3553-3554.	4.0	14
257	ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering. Beilstein Journal of Organic Chemistry, 2010, 6, 1199-1205.	2.2	14
258	Zinc Oxide Based Coatings for the UVâ€Protection of Wood for Outdoor Applications. Macromolecular Symposia, 2011, 301, 23-30.	0.7	14
259	Functionalization of plasmaâ€treated polymer surfaces with glycidol. Journal of Applied Polymer Science, 2011, 121, 2543-2550.	2.6	14
260	N-Heterocyclic carbene-induced transmethylation in tungsten imido alkylidene bistriflates: unexpected formation of an N-heterocyclic olefin complex. Chemical Communications, 2017, 53, 12036-12039.	4.1	14
261	Stable Cycling of Roomâ€Temperature Sodiumâ€Sulfur Batteries Based on an In Situ Crosslinked Gel Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	14.9	14
262	Terpyridine-based silica supports prepared by ring-opening metathesis polymerization for the selective extraction of noble metals. Journal of Chromatography A, 2003, 1015, 65-71.	3.7	13
263	Synthesis, X-ray structure and reactivity of μ-(CF3COO)2-[Mo(N-2,6-i-Pr2-C6H3)(CHCMe2Ph)(OOCCF3)(Et2O)]2, the first Bis(trifluoroacetate) derivative of a Schrock catalyst. Journal of Organometallic Chemistry, 2006, 691, 5391-5396.	1.8	13
264	Tandem vinyl insertion-/ring-opening metathesis copolymerization with ansa-6-[2-(dimesitylboryl)-phenyl]pyrid-2-ylamido zirconium complexes: role of trialkylaluminum and MAO. Polymer Chemistry, 2016, 7, 1987-1998.	3.9	13
265	Tandem Ringâ€Opening Metathesis – Vinyl Insertion Polymerization: Fundamentals and Application to Functional Polyolefins. Macromolecular Rapid Communications, 2017, 38, 1600672.	3.9	13
266	Promoting Terminal Olefin Metathesis with a Supported Cationic Molybdenum Imido Alkylidene Nâ€Heterocyclic Carbene Catalyst. Angewandte Chemie, 2018, 130, 14774-14777.	2.0	13
267	Olefin Ringâ€closing Metathesis under Spatial Confinement and Continuous Flow. ChemCatChem, 2021, 13, 2234-2241.	3.7	13
268	Rh(I)/(III)â€Nâ€Heterocyclic Carbene Complexes: Effect of Steric Confinement Upon Immobilization on Regio― and Stereoselectivity in the Hydrosilylation of Alkynes. Chemistry - A European Journal, 2021, 27, 17220-17229.	3.3	13
269	Functional Monolithic Materials for Boronateâ€Affinity Chromatography via Schrock Catalystâ€Triggered Ringâ€Opening Metathesis Polymerization. Macromolecular Rapid Communications, 2012, 33, 1399-1403.	3.9	12
270	Flexible, Switchable Electrochromic Textiles. Macromolecular Materials and Engineering, 2014, 299, 330-335.	3.6	12

#	Article	IF	CITATIONS
271	Sizeâ€Exclusion Chromatography and Aggregation Studies of Acetylated Lignins in <i>N,N</i> â€Dimethylacetamide in the Presence of Salts. Macromolecular Chemistry and Physics, 2015, 216, 2012-2019.	2.2	12
272	Grubbs–Hoveyda type catalysts bearing a dicationic <i>N</i> -heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids. Beilstein Journal of Organic Chemistry, 2015, 11, 1632-1638.	2.2	12
273	Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports. Microporous and Mesoporous Materials, 2020, 293, 109778.	4.4	12
274	A sodium bis(perfluoropinacol) borate-based electrolyte for stable, high-performance room temperature sodium-sulfur batteries based on sulfurized poly(acrylonitrile). Electrochemistry Communications, 2021, 132, 107137.	4.7	12
275	Performance enhancement of rechargeable magnesium–sulfur batteries based on a sulfurized poly(acrylonitrile) composite and a lithium salt. Journal of Power Sources, 2021, 515, 230604.	7.8	12
276	222 nm Photo-induced radical reactions in silazanes. A combined laser photolysis, EPR, GC-MS and QC Study. Physical Chemistry Chemical Physics, 2010, 12, 2380.	2.8	11
277	Synthesis and dry-spinning fibers of sulfinyl-based poly(p-phenylene vinylene) (ppv) for semi-conductive textile applications. Journal of Materials Chemistry, 2012, 22, 11851.	6.7	11
278	Co(acac) ₂ â€Mediated Radical Polymerization of Acrylonitrile: Control Over Molecular Weights and Copolymerization With Methyl Methacrylate. Macromolecular Materials and Engineering, 2012, 297, 894-901.	3.6	11
279	Ageing of Siliconeâ€Based Dielectric Elastomers Prepared with Varying Stoichiometric Imbalance: Changes in Network Structure, Mechanical, and Electrical Properties. Macromolecular Chemistry and Physics, 2016, 217, 1729-1736.	2.2	11
280	Mono―and Bisionic Mo―and Wâ€Based Schrock Catalysts for Biphasic Olefin Metathesis Reactions in Ionic Liquids. Chemistry - A European Journal, 2018, 24, 13336-13347.	3.3	11
281	Melt-Spinning of an Intrinsically Flame-Retardant Polyacrylonitrile Copolymer. Materials, 2020, 13, 4826.	2.9	11
282	Influence of the Silicon–Carbon Interface on the Structure and Electrochemical Performance of a Phenolic Resin-Derived Si@C Core–Shell Nanocomposite-Based Anode. ACS Applied Materials & Interfaces, 2022, 14, 761-770.	8.0	11
283	A design concept for halogen-free Mg2+/Li+-dual salt-containing gel-polymer-electrolytes for rechargeable magnesium batteries. Energy Storage Materials, 2022, 49, 509-517.	18.0	11
284	Voltageâ€assisted capillary LC of peptides using monolithic capillary columns prepared by ringâ€opening metathesis polymerization. Electrophoresis, 2007, 28, 2219-2222.	2.4	10
285	Self-Diffusion of Polystyrene Solutions in Porous Acrylate-Based Monoliths Studied by ¹ H PFG NMR. Macromolecules, 2010, 43, 9441-9446.	4.8	10
286	Hollow carbon fibers with tailored porosity and rim-thickness. Carbon, 2013, 63, 554-561.	10.3	10
287	Protected N-heterocyclic carbenes as latent organocatalysts for the low-temperature curing of anhydride-hardened epoxy resins. European Polymer Journal, 2017, 95, 766-774.	5.4	10
288	Surface Modification of Carbon Fibers by Free Radical Graftâ€Polymerization of 2â€Hydroxyethyl Methacrylate for High Mechanical Strength Fiber–Matrix Composites. Macromolecular Materials and Engineering, 2017, 302, 1700210.	3.6	10

#	Article	IF	CITATIONS
289	Ti (IV) Complexes with Bidentate <i>O</i> â€Chelating <i>N</i> â€Heterocyclic Carbenes for Use in the Homopolymerization of Ethylene and Its Copolymerization with Cyclic Olefins. ChemCatChem, 2019, 11, 744-752.	3.7	10
290	Silica‣upported Cationic Tungsten Imido Alkylidene Stabilized by an N â€Heterocyclic Carbene Ligand Boosts Activity and Selectivity in the Metathesis of αâ€Olefins. Helvetica Chimica Acta, 2020, 103, e2000161.	1.6	10
291	Metalâ€Surface Interactions and Surface Heterogeneity in â€~Wellâ€Defined' Silicaâ€Supported Alkene Metathesis Catalysts: Evidences and Consequences. Helvetica Chimica Acta, 2020, 103, e2000072.	1.6	10
292	Preparation of Cellulose-Derived Carbon Fibers Using a New Reduced-Pressure Stabilization Method. Industrial & Engineering Chemistry Research, 2022, 61, 5191-5201.	3.7	10
293	Tailor-made polymer supportsvia metathesis polymerization: concepts and applications. Macromolecular Symposia, 2001, 163, 25-34.	0.7	9
294	Process Control in Ultraviolet Curing with in-line near Infrared Reflection Spectroscopy. Journal of Near Infrared Spectroscopy, 2008, 16, 165-171.	1.5	9
295	Determination of the Thickness of Silazane-Based SiO _x Coatings in the Submicrometer Range by Near-Infrared Reflection Spectroscopy. Applied Spectroscopy, 2009, 63, 239-245.	2.2	9
296	UV―and thermally triggered ringâ€opening metathesis polymerization for the spatially resolved functionalization of polymeric monolithic devices. Journal of Applied Polymer Science, 2011, 121, 2551-2558.	2.6	9
297	â€ [~] Pseudo-halide' Derivatives of Grubbs- and Schrock-Type Catalysts for Olefin Metathesis. Synlett, 2012, 2012, 185-207.	1.8	9
298	Access to Ultraâ€Highâ€Molecular Weight Poly(ethylene) and Activity Boost in the Presence of Cyclopentene With Groupâ€4 Bisâ€Amido Complexes. ChemPlusChem, 2014, 79, 151-162.	2.8	9
299	Synthesis of intrinsically flameâ€retardant copolyamides and their employment in PA6â€fibers. Polymers for Advanced Technologies, 2019, 30, 2872-2882.	3.2	9
300	Catalysis in Confined Spaces. ChemCatChem, 2021, 13, 785-786.	3.7	9
301	Transparent Fiber-Reinforced Composites Based on a Thermoset Resin Using Liquid Composite Molding (LCM) Techniques. Materials, 2021, 14, 6087.	2.9	9
302	Rearrangements and dimerizations of congested ferrocenyl allyl alcohols. Journal of Organometallic Chemistry, 2000, 605, 174-183.	1.8	8
303	Novel Nanosized Aluminium Carboxylates: Synthesis, Characterization and Use as Nanofillers for Protective Polymeric Coatings. Macromolecular Materials and Engineering, 2007, 292, 70-77.	3.6	8
304	172Ânm excimer VUV-triggered photodegradation and micropatterning of aminosilane films. Thin Solid Films, 2009, 517, 6772-6776.	1.8	8
305	Miniaturized biocatalysis on polyacrylateâ€based capillary monoliths. Journal of Applied Polymer Science, 2011, 119, 1450-1458.	2.6	8
306	pâ€Doping and Fiber Spinning of Poly(heptadiyne)s. Macromolecular Chemistry and Physics, 2013, 214, 1047-1051.	2.2	8

#	Article	IF	CITATIONS
307	Poly(ethylene)â€ <i>co</i> â€Poly(norbornâ€2â€ene) Prepared by Group IV Bisamido and Halfâ€Sandwich Amido Complexes with Pendant Aminoborane Groups: Vinyl Insertion vs Ringâ€Opening Metathesis Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 893-899.	2.2	8
308	Latent CO ₂ â€Protected Nâ€Heterocyclic Carbeneâ€Based Singleâ€Component Systemâ€Derived Epoxy/Glass Fiber Composites. Macromolecular Materials and Engineering, 2015, 300, 937-943.	3.6	8
309	In Situ Copolymerization of Lactams for Melt Spinning. Macromolecular Materials and Engineering, 2016, 301, 423-428.	3.6	8
310	Organoclays assisted vat and disperse dyeing of poly(ethylene terephthalate) nanocomposite fabrics via melt spinning. Coloration Technology, 2018, 134, 126-134.	1.5	8
311	Communication—Influence of Temperature and Electrolyte Viscosity on the Electrochemical Performance of SPAN-Based Lithium-Sulfur Cells. Journal of the Electrochemical Society, 2018, 165, A3943-A3945.	2.9	8
312	Structure evolution in all-aromatic, poly(p-phenylene-vinylene)-derived carbon fibers. Carbon, 2019, 144, 659-665.	10.3	8
313	Origin and Use of Hydroxyl Group Tolerance in Cationic Molybdenum Imido Alkylidene Nâ€Heterocyclic Carbene Catalysts. Angewandte Chemie, 2020, 132, 961-968.	2.0	8
314	Cationic Group VI Metal Imido Alkylidene <i>N</i> â€Heterocyclic Carbene Nitrile Complexes: Benchâ€Stable, Functionalâ€Groupâ€Tolerant Olefin Metathesis Catalysts. Angewandte Chemie, 2021, 133, 1394-1402.	2.0	8
315	Influence of the Drying Temperature on the Performance and Binder Distribution of Sulfurized Poly(acrylonitrile) Cathodes. Journal of the Electrochemical Society, 2021, 168, 050510.	2.9	8
316	Tandem Ring-Opening Metathesis / Vinyl Insertion Polymerization-Derived Poly (Olefin)s. Current Organic Chemistry, 2013, 17, 2764-2775.	1.6	8
317	Olefin-Surface Interactions: A Key Activity Parameter in Silica-Supported Olefin Metathesis Catalysts. Jacs Au, 2022, 2, 777-786.	7.9	8
318	Ring-opening polymerization of cyclohexene oxide by a novel dicationic palladium catalyst. Designed Monomers and Polymers, 2005, 8, 571-588.	1.6	7
319	Monolithic Precolumns as Efficient Tools for Guiding the Design of Nanoparticulate Drug-Delivery Formulations. Analytical Chemistry, 2012, 84, 7415-7421.	6.5	7
320	Tandem-reduction of DMF with silanes via necklace-type transition over Pt(0) nanoparticles: deciphering the dual Si–H effect as an extension of steric effects. Chemical Communications, 2014, 50, 14820-14823.	4.1	7
321	Chromium(VI) Bisimido Dichloro, Bisimido Alkylidene, and Chromium(V) Bisimido Iodo N â€Heterocyclic Carbene Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 3673-3681.	2.0	7
322	Melt spinning of propylene carbonateâ€plasticized poly(acrylonitrile)―co â€poly(methyl acrylate). Polymers for Advanced Technologies, 2020, 31, 1827-1835.	3.2	7
323	Cationic Tungsten Oxo Alkylidene N-Heterocyclic Carbene Complexes via Hydrolysis of Cationic Alkylidyne Progenitors. Organometallics, 2021, 40, 927-937.	2.3	7
324	Structure Evolution in Polyethyleneâ€Derived Carbon Fiber Using a Combined Electron Beamâ€Stabilizationâ€Sulphurization Approach. Macromolecular Materials and Engineering, 2021, 306, 2100280.	3.6	7

#	Article	IF	CITATIONS
325	Highâ€Performance Carbon Fibers Prepared by Continuous Stabilization and Carbonization of Electron Beamâ€Irradiated Textile Grade Polyacrylonitrile Fibers. Macromolecular Materials and Engineering, 2021, 306, 2100484.	3.6	7
326	Group 6 High Oxidation State Alkylidene and Alkylidyne Complexes. , 2022, , 671-773.		7
327	Peculiarities of the Ru ^{IV} â€Alkylidene Triggered Cyclopolymerization of Nâ€{bis(alkyloxy)aryl)― Containing 1,6â€Heptadiynes. Macromolecular Symposia, 2007, 254, 370-374.	0.7	6
328	An Open Argon Dielectric Barrier Discharge VUVâ€Source. Plasma Processes and Polymers, 2010, 7, 650-656.	3.0	6
329	Stereospecific Styrene Polymerization by Methylalumoxaneâ€Activated Ti (IV) <i>N</i> â€Trimethylsilylamido Complexes Bearing the <i>N</i> â€Biphenyl or <i>N</i> â€(6â€(2â€(Diethylboryl)phenyl)â€Pyridâ€2â€yl) Motif. Macromolecular Chemistry and Physics, 2014, 21 2007-2013.	1 <mark>2.2</mark>	6
330	An Investigation of Structure–Property Relationships in Siliconeâ€Based Dielectric Electroactive Elastomers by Varying Stoichiometric Imbalance of the Network. Macromolecular Materials and Engineering, 2016, 301, 337-347.	3.6	6
331	Regio―and Stereospecific Cyclopolymerization of α,ï‰â€Diynes by Cationic Molybdenum Imido Alkylidene <i>N</i> â€Heterocyclic Carbene Complexes. Macromolecular Rapid Communications, 2020, 41, e1900398.	3.9	6
332	Synthesis of Ionic Dendrimers and Their Potential Use as Electrolytes for Lithium–Sulfur Batteries. Macromolecular Chemistry and Physics, 2020, 221, 1900436.	2.2	6
333	Reversible N―Heterocyclic Carbeneâ€Induced αâ€H Abstraction in Tungsten(VI) Imido Dialkyl Dialkoxide Complexes. Chemistry - A European Journal, 2020, 26, 8709-8713.	3.3	6
334	Cationic tungsten imido alkylidene N-heterocyclic carbene complexes for stereospecific ring-opening metathesis polymerization of norbornene derivatives. Polymer Chemistry, 2021, 12, 5979-5985.	3.9	6
335	On the Origin of E-Selectivity in the Ring-Opening Metathesis Polymerization with Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Organometallics, 2021, 40, 2478-2488.	2.3	6
336	Communication—Lithium Titanate as Mg-Ion Insertion Anode for Mg-Ion Sulfur Batteries Based on Sulfurated Poly(acrylonitrile) Composite. Journal of the Electrochemical Society, 2022, 169, 010505.	2.9	6
337	Heterogenization of ferrocene palladacycle catalysts on ROMP-derived monolithic supports and application to a Michael addition. New Journal of Chemistry, 2014, 38, 5597-5607.	2.8	5
338	Convenient preparation of high molecular weight poly(dimethylsiloxane) using thermally latent NHC-catalysis: a structure-activity correlation. Beilstein Journal of Organic Chemistry, 2015, 11, 2261-2266.	2.2	5
339	Interplay between Mechanical Fatigue and Network Structure and Their Effects on Mechanical and Electrical Properties of Thin Silicone Films with Varying Stoichiometric Imbalance. Macromolecular Chemistry and Physics, 2016, 217, 1558-1568.	2.2	5
340	<i>N</i> , <i>N</i> ′-Substituted acryloamidines – novel comonomers for melt-processible poly(acrylonitrile)-based carbon fiber precursors. Polymer Chemistry, 2019, 10, 4469-4476.	3.9	5
341	Synthesis of Tungsten(VI) Imido Alkylidene Bispyrrolide Complexes via the Isocyanate Route. Organometallics, 2020, 39, 3072-3076.	2.3	5
342	Noble metal location in porous supports determined by reaction with phosphines. Microporous and Mesoporous Materials, 2021, 310, 110594.	4.4	5

MICHAEL R BUCHMEISER

#	Article	IF	CITATIONS
343	Tuning the Latent Behavior of Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes in Dicyclopentadiene Polymerization. Organometallics, 2021, 40, 253-265.	2.3	5
344	Development of New Cellulosic Fibers and Composites Using Ionic Liquid Technology. Green Chemistry and Sustainable Technology, 2020, , 227-259.	0.7	5
345	Fibrous Polyethyleneimineâ€Functionalized Cellulose Materials for CO ₂ Capture and Release. Macromolecular Materials and Engineering, 2022, 307, .	3.6	5
346	Cationic molybdenum oxo alkylidenes stabilized by N-heterocyclic carbenes: from molecular systems to efficient supported metathesis catalysts. Chemical Science, 2022, 13, 8649-8656.	7.4	5
347	Tailoring the surface of magnetic microparticles for protein immobilization. Journal of Applied Polymer Science, 2011, 121, 3628-3634.	2.6	4
348	Highâ€Mechanicalâ€Strength Flameâ€Retardant Nanocomposites Based on Novel Al(III)―and Zr(IV)â€Melamine Phosphates and Sulfates. Macromolecular Materials and Engineering, 2013, 298, 690-698.	3.6	4
349	Precision Polymers. Macromolecular Chemistry and Physics, 2014, 215, 1934-1935.	2.2	4
350	Calcium Cl/OH-apatite, Cl/OH-apatite/Al2O3 and Ca3(PO4)2 fibre nonwovens: Potential ceramic components for osteosynthesis. Journal of the European Ceramic Society, 2014, 34, 3993-4000.	5.7	4
351	An anionic molybdenum amidato bisalkyl alkylidyne complex. Journal of Organometallic Chemistry, 2015, 799-800, 223-225.	1.8	4
352	Pentamethylcyclopentadienyl Titanium(IV) Amido Pyridylene Phenylene and Pentamethylcyclopentadienyl Titanacyclopropane Amido Complexes and their Behavior in the Polymerization of Ethylene and Cyclic Olefins. ChemCatChem, 2017, 9, 1242-1252.	3.7	4
353	Synthesis of dihydroxy telechelic oligomers of βâ€butyrolactone catalyzed by titanium(IV)â€alkoxides and their use as macrodiols in polyurethane chemistry. Journal of Polymer Science, 2021, 59, 274-281.	3.8	4
354	Cationic Tungsten Imido Alkylidene N-Heterocyclic Carbene Complexes That Contain Bulky Ligands. Organometallics, 2021, 40, 3145-3157.	2.3	4
355	Preparation of C/Câ€5iC Composites from Allâ€Cellulose Precursors. Macromolecular Materials and Engineering, 2019, 304, 1800763.	3.6	4
356	Hardâ€modeling of reaction kinetics by combining online spectroscopy and calorimetry. Journal of Chemometrics, 2008, 22, 758-767.	1.3	3
357	Ringâ€Opening Metathesis Polymerizationâ€Derived Monolithic Materials: Novel Syntheses and Applications. Macromolecular Symposia, 2010, 293, 48-52.	0.7	3
358	Surface Characterization of Carbon Fibers by Atomic Force Microscopy: Roughness Quantification by Power Spectral Density. Key Engineering Materials, 0, 742, 447-456.	0.4	3
359	Carbon Fibers. , 2015, , 306-310.		3
360	Predicting Catalytic Activity from 13CCH Alkylidene Chemical Shift in Cationic Tungsten Oxo Alkylidene Nâ€Heterocyclic Carbene Complexes. ChemCatChem, 0, , .	3.7	3

#	Article	IF	CITATIONS
361	Ligand Variations in Neutral and Cationic Molybdenum Alkylidyne NHC Catalysts. Organometallics, 0, ,	2.3	3
362	Well-Defined Transition Metal Catalysts for Metathesis Polymerization. , 2005, , 155-191.		2
363	BaSO ₄ â€; CaF ₂ â€; and Alâ€Maleateâ€Derived Nanocomposite Coatings with Excellent Mechanical, Thermal, and Optical Properties. Macromolecular Materials and Engineering, 2010, 295, 276-282.	3.6	2
364	New Trends in Highâ€Performance Fibers and Fiber Technology. Macromolecular Materials and Engineering, 2012, 297, 491-492.	3.6	2
365	Syntheses and Crystal Structures of Ferrocenoindenes. Crystals, 2013, 3, 141-148.	2.2	2
366	Biopolymere aus ionischen Flüssigkeiten verarbeiten. Nachrichten Aus Der Chemie, 2017, 65, 998-1003.	0.0	2
367	Reaction Mechanism of Ring-Closing Metathesis with a Cationic Molybdenum Imido Alkylidene <i>N</i> -Heterocyclic Carbene Catalyst. Organometallics, 2020, 39, 3146-3159.	2.3	2
368	A Hard Templating Approach to Functional Mesoporous Poly(norbornâ€2â€ene)â€Based Monolithic Supports. Macromolecular Chemistry and Physics, 2021, 222, 2100247.	2.2	2
369	N-Heterocyclic and Mesoionic Carbene Complexes of Group 5 and Group 6 Metals. , 2022, , 208-263.		2
370	Lithium-Sulfur Batteries Based on Sulfurized Poly(acrylonitrile) Cathodes: Impact of Electrode Density on Cell Performance. Journal of the Electrochemical Society, 0, , .	2.9	2
371	Tungsten Sulfido Alkylidene and Cationic Tungsten Sulfido Alkylidene <i>N</i> -Heterocyclic Carbene Complexes. Organometallics, 2021, 40, 4026-4034.	2.3	2
372	Isomers of Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Organometallics, 2022, 41, 1232-1248.	2.3	2
373	High-Performance Cathode Materials for Lithium–Sulfur Batteries Based on Sulfurated Poly(norbornadiene) and Sulfurated Poly(dicyclopentadiene). ACS Applied Energy Materials, 2022, 5, 7642-7650.	5.1	2
374	Transition metal-based polymer chemistry: a critical micro-review. Designed Monomers and Polymers, 2002, 5, 363-383.	1.6	1
375	Dihydroxyaluminum Carboxylate Nanoparticles With Narrow Size Distribution: Synthesis, Characterization and Use for High Optical Transparency Protective Polymeric Coatings. Macromolecular Materials and Engineering, 2010, 295, 170-177.	3.6	1
376	Bis(1,2-dimethoxyethane)-1ΰ ² <i>O</i> , <i>O</i> â€2;3ΰ ² <i>O</i> , <i>O</i> â€2-tetrakis Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1106-m1106.	$(\hat{1}_{0.2}^{1/4},1,1,1,1)$,3,3,3-hexaf
377	[μ-3,3′-Diisopropyl-1,1′-(propane-1,3-diyl)bis(1,3-diazinan-2-ylidene)]bis[bromido(η ⁴ -cyclooct Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m71-m72.	a-1,5-dier 0.2	ne)rhodium(
378	Dual catalysis with an N â€heterocyclic carbene and a Lewis acid: Thermally latent precatalyst for the	3.8	1

Dual catalysis with an N $\hat{a} \in heterocyclic carbene and a Lewis acid: Thermally latent precatalyst for the polymerization of <math>\hat{l}\mu \hat{a} \in caprolactam$. Journal of Polymer Science, 2020, 58, 3219-3226. 378

3.8

#	Article	IF	CITATIONS
379	A Spirocyclic Parabanic Acid Masked N â€Heterocyclic Carbene as Thermally Latent Preâ€Catalyst for Polyamide 6 Synthesis and Epoxide Curing. Macromolecular Rapid Communications, 2020, 41, 2000338.	3.9	1
380	Organoclayâ€assisted vat dyeing of polypropylene nanocomposite fabrics. Coloration Technology, 0, , .	1.5	1
381	Novel Cyclopolymerization Derived Conjugated Polyenes: Smart Materials For Electronics and Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 303-317.	0.5	1
382	A Commentary on "Bis(cyclopentadienyl)zirkon-Verbindungen und Aluminoxan als Ziegler-Katalysatoren fÃ1⁄4r die Polymerisation und Copolymerisation von Olefinen―by W. Kaminsky, M. Miri, H. Sinn, R. Woldt(Makromol. Chem., Rapid Commun. 1983,4, 417-421). Macromolecular Rapid Communications, 2005, 26, 1201-1207.	3.9	0
383	(Ε6-p-Cymene)(1,3-dimesityl-2,3-dihydro-1H-imidazol-2-ylidene)bis(pentafluorobenzoato-κO)ruthenium(II) dichloromethane disolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m28-m28.	0.2	0
384	Frontispiece: Molybdenum Imido, Tungsten Imido and Tungsten Oxo Alkylidene N-Heterocyclic Carbene Olefin Metathesis Catalysts. Chemistry - A European Journal, 2018, 24, .	3.3	0
385	Werkstoffe: Oxidkeramische Fasern. Nachrichten Aus Der Chemie, 2021, 69, 42-44.	0.0	0
386	From organometallic and polymer chemistry to applied materials science: transition metal catalyzed synthesis of polyolefins and polyolefin-based high-performance materials. Macromolecular Symposia, 2002, 181, 23-38.	0.7	0
387	Special Issue on Contemporary Challenges in Catalysis. Chemistry - A European Journal, 2021, 27, 16808-16808.	3.3	0