
Amadeo R FernÃ;ndez-Alba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006, 69, 334-342.	5.5	1,297
2	Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 2010, 44, 578-588.	11.3	799
3	Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere, 2007, 66, 993-1002.	8.2	472
4	Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography–tandem mass spectrometry analysis in hospital effluent wastewaters. Journal of Chromatography A, 2006, 1114, 224-233.	3.7	424
5	Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environmental Pollution, 2012, 164, 267-273.	7.5	374
6	Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A, 2011, 1218, 7634-7639.	3.7	361
7	Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment. Water Research, 2011, 45, 1394-1402.	11.3	289
8	Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2008, 1215, 37-50.	3.7	287
9	Application of Liquid Chromatography/Quadrupole-Linear Ion Trap Mass Spectrometry and Time-of-Flight Mass Spectrometry to the Determination of Pharmaceuticals and Related Contaminants in Wastewater. Analytical Chemistry, 2007, 79, 9372-9384.	6.5	279
10	Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Journal of Chromatography A, 2005, 1069, 183-194.	3.7	221
11	Multi-residue pesticide analysis in fruits and vegetables by liquid chromatography–time-of-flight mass spectrometry. Journal of Chromatography A, 2005, 1082, 81-90.	3.7	191
12	Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrometry Reviews, 2006, 25, 866-880.	5.4	184
13	Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Analytica Chimica Acta, 2004, 524, 241-247.	5.4	178
14	Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere, 2008, 74, 37-44.	8.2	173
15	Application of Photo-Fenton as a Tertiary Treatment of Emerging Contaminants in Municipal Wastewater Environmental Science & Technology, 2010, 44, 1792-1798.	10.0	166
16	Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2013, 1304, 109-120.	3.7	164
17	Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: Screening and quantitative studies. Journal of Chromatography A, 2013, 1287, 24-37.	3.7	159
18	Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. Analytica Chimica Acta, 2003, 480, 193-205.	5.4	153

#	Article	IF	CITATIONS
19	Determination of pesticide residues in olive oil and olives. TrAC - Trends in Analytical Chemistry, 2007, 26, 239-251.	11.4	152
20	Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Research, 2008, 42, 3719-3728.	11.3	150
21	Accurate-Mass Databases for Comprehensive Screening of Pesticide Residues in Food by Fast Liquid Chromatography Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2009, 81, 913-929.	6.5	150
22	Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. Journal of Chromatography A, 2010, 1217, 7038-7054.	3.7	143
23	Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture. TrAC - Trends in Analytical Chemistry, 2009, 28, 676-694.	11.4	136
24	Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere, 2007, 68, 724-730.	8.2	135
25	Development and validation of a LC–MS/MS method for the simultaneous determination of aflatoxins, dyes and pesticides in spices. Analytical and Bioanalytical Chemistry, 2010, 397, 93-107.	3.7	134
26	Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: Validation and pilot survey in real samples. Journal of Chromatography A, 2012, 1268, 109-122.	3.7	133
27	Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS. TrAC - Trends in Analytical Chemistry, 2007, 26, 828-841.	11.4	132
28	Quantitation and Accurate Mass Analysis of Pesticides in Vegetables by LC/TOF-MS. Analytical Chemistry, 2005, 77, 2818-2825.	6.5	131
29	Identification of Pesticide Transformation Products in Food by Liquid Chromatography/Time-of-Flight Mass Spectrometry via "FragmentationⰒDegradation―Relationships. Analytical Chemistry, 2007, 79, 307-321.	6.5	127
30	Large-scale multi-residue methods for pesticides and their degradation products in food by advanced LC-MS. TrAC - Trends in Analytical Chemistry, 2008, 27, 973-990.	11.4	126
31	New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environmental Science and Pollution Research, 2013, 20, 3496-3515.	5.3	125
32	Matching unknown empirical formulas to chemical structure using LC/MS TOF accurate mass and database searching: example of unknown pesticides on tomato skins. Journal of Chromatography A, 2005, 1067, 127-134.	3.7	123
33	A new gas chromatography/mass spectrometry method for the simultaneous analysis of target and non-target organic contaminants in waters. Journal of Chromatography A, 2009, 1216, 4071-4082.	3.7	119
34	Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC–MS/MS. Talanta, 2011, 83, 1613-1622.	5.5	117
35	Identification and confirmation of chemical residues in food by chromatography-mass spectrometry and other techniques. TrAC - Trends in Analytical Chemistry, 2008, 27, 1070-1090.	11.4	116
36	Comparative study of analytical methods involving gas chromatography–mass spectrometry after derivatization and gas chromatography–tandem mass spectrometry for the determination of selected endocrine disrupting compounds in wastewaters. Journal of Chromatography A, 2004, 1047, 129-135.	3.7	115

#	Article	IF	CITATIONS
37	Large Scale Pesticide Multiresidue Methods in Food Combining Liquid Chromatography– Time-of-Flight Mass Spectrometry and Tandem Mass Spectrometry. Analytical Chemistry, 2007, 79, 7308-7323.	6.5	114
38	Discovering metabolites of post-harvest fungicides in citrus with liquid chromatography/time-of-flight mass spectrometry and ion trap tandem mass spectrometry. Journal of Chromatography A, 2005, 1082, 71-80.	3.7	110
39	Photodegradation study of three dipyrone metabolites in various water systems: Identification and toxicity of their photodegradation products. Water Research, 2008, 42, 2698-2706.	11.3	110
40	Determination of malachite green residues in fish using molecularly imprinted solid-phase extraction followed by liquid chromatography–linear ion trap mass spectrometry. Analytica Chimica Acta, 2010, 665, 47-54.	5.4	109
41	Large-scale pesticide testing in olives by liquid chromatography–electrospray tandem mass spectrometry using two sample preparation methods based on matrix solid-phase dispersion and QuEChERS. Journal of Chromatography A, 2010, 1217, 6022-6035.	3.7	106
42	Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity. Journal of Hazardous Materials, 2015, 292, 34-43.	12.4	104
43	Automatic Searching and Evaluation of Priority and Emerging Contaminants in Wastewater and River Water by Stir Bar Sorptive Extraction followed by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2011, 83, 2638-2647.	6.5	103
44	Determination of volatile organic compounds in drinking and environmental waters. TrAC - Trends in Analytical Chemistry, 2012, 32, 60-75.	11.4	102
45	Determination of Pesticide Residues in Fruit-Based Soft Drinks. Analytical Chemistry, 2008, 80, 8966-8974.	6.5	101
46	Application of passive sampling devices for screening of micro-pollutants in marine aquaculture using LC–MS/MS. Talanta, 2009, 77, 1518-1527.	5.5	99
47	LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. TrAC - Trends in Analytical Chemistry, 2007, 26, 581-594.	11.4	98
48	Large pesticide multiresidue screening method by liquid chromatography-Orbitrap mass spectrometry in full scan mode applied to fruit and vegetables. Journal of Chromatography A, 2014, 1360, 119-127.	3.7	93
49	Development of a solvent-free method for the simultaneous identification/quantification of drugs of abuse and their metabolites in environmental water by LC–MS/MS. Talanta, 2011, 85, 157-166.	5.5	92
50	Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution. Science of the Total Environment, 2012, 420, 134-145.	8.0	91
51	Application of ultra performance liquid chromatography–tandem mass spectrometry to the analysis of priority pesticides in groundwater. Journal of Chromatography A, 2006, 1109, 222-227.	3.7	89
52	Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays. Water Research, 2003, 37, 4091-4098.	11.3	88
53	Life Cycle Assessment of Water Supply Plans in Mediterranean Spain. Journal of Industrial Ecology, 2010, 14, 902-918.	5.5	85
54	Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry. Talanta, 2014, 118, 68-83.	5.5	84

#	Article	IF	CITATIONS
55	Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta, 2017, 174, 72-81.	5.5	82
56	Simultaneous analysis of neutral and acidic pharmaceuticals as well as related compounds by gas chromatography–tandem mass spectrometry in wastewater. Talanta, 2007, 73, 314-320.	5.5	76
57	Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. International Journal of Life Cycle Assessment, 2010, 15, 672-681.	4.7	76
58	Multiresidue method for the analysis of multiclass pesticides in agricultural products by gas chromatography-tandem mass spectrometry. Analyst, The, 2002, 127, 347.	3.5	75
59	Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environmental Pollution, 2010, 158, 1809-1816.	7.5	75
60	Behavior of amoxicillin in wastewater and river water: identification of its main transformation products by liquid chromatography/electrospray quadrupole timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 731-742.	1.5	75
61	Occurrence of Antifouling Biocides in the Spanish Mediterranean Marine Environment. Environmental Technology (United Kingdom), 2001, 22, 543-552.	2.2	73
62	Application of high-performance liquid chromatography–tandem mass spectrometry with a quadrupole/linear ion trap instrument for the analysis of pesticide residues in olive oil. Analytical and Bioanalytical Chemistry, 2007, 389, 1815-1831.	3.7	73
63	Use of an accurate-mass database for the systematic identification of transformation products of organic contaminants in wastewater effluents. Journal of Chromatography A, 2011, 1218, 8002-8012.	3.7	72
64	A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 2015, 1426, 161-173.	3.7	72
65	Identification and measurement of veterinary drug residues in beehive products. Food Chemistry, 2019, 274, 61-70.	8.2	72
66	Determination of Imidacloprid and Benzimidazole Residues in Fruits and Vegetables by Liquid Chromatography–Mass Spectrometry after Ethyl Acetate Multiresidue Extraction. Journal of AOAC INTERNATIONAL, 2000, 83, 748-755.	1.5	70
67	One-year routine application of a new method based on liquid chromatography–tandem mass spectrometry to the analysis of 16 multiclass pesticides in vegetable samples. Journal of Chromatography A, 2004, 1045, 125-135.	3.7	69
68	Matrix Effects and Interferences of Different Citrus Fruit Coextractives in Pesticide Residue Analysis Using Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 4819-4829.	5.2	69
69	Honeybees as active samplers for microplastics. Science of the Total Environment, 2021, 767, 144481.	8.0	69
70	Large multiresidue analysis of pesticides in edible vegetable oils by using efficient solid-phase extraction sorbents based on quick, easy, cheap, effective, rugged and safe methodology followed by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 2016, 1463, 20-31.	3.7	68
71	Searching for non-target chlorinated pesticides in food by liquid chromatography/time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 2780-2788.	1.5	64
72	Analyses of pesticide residues in fruit-based baby food by liquid chromatography/electrospray ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 2059-2071.	1.5	64

#	Article	IF	CITATIONS
73	Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography–quadrupole-linear ion trap-mass spectrometry. Journal of Chromatography A, 2011, 1218, 4790-4798.	3.7	64
74	Determination of Postharvest Fungicides in Fruit Juices by Solid-Phase Extraction Followed by Liquid Chromatography Electrospray Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2007, 55, 10548-10556.	5.2	62
75	Evaluation of various liquid chromatography-quadrupole-linear ion trap-mass spectrometry operation modes applied to the analysis of organic pollutants in wastewaters. Journal of Chromatography A, 2009, 1216, 5995-6002.	3.7	62
76	Oxidative and photochemical processes for the removal of galaxolide and tonalide from wastewater. Water Research, 2012, 46, 4435-4447.	11.3	61
77	Pilot survey of chemical contaminants from industrial and human activities in river waters of Spain. International Journal of Environmental Analytical Chemistry, 2010, 90, 321-343.	3.3	60
78	Toxicity of pesticides in wastewater: a comparative assessment of rapid bioassays. Analytica Chimica Acta, 2001, 426, 289-301.	5.4	59
79	LC-MS analysis and environmental risk of lipid regulators. Analytical and Bioanalytical Chemistry, 2007, 387, 1269-1285.	3.7	59
80	Evaluation of two sample treatment methodologies for large-scale pesticide residue analysis in olive oil by fast liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A, 2010, 1217, 3736-3747.	3.7	59
81	Solid-phase extraction followed by liquid chromatography–time-of-flight–mass spectrometry to evaluate pharmaceuticals in effluents. A pilot monitoring study. Journal of Environmental Monitoring, 2007, 9, 718-729.	2.1	58
82	Simultaneous measurement in mass and mass/mass mode for accurate qualitative and quantitative screening analysis of pharmaceuticals in river water. Journal of Chromatography A, 2012, 1256, 80-88.	3.7	58
83	A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops. Journal of Chromatography A, 2018, 1546, 66-76.	3.7	58
84	Fast separation liquid chromatography–tandem mass spectrometry for the confirmation and quantitative analysis of avermectin residues in food. Journal of Chromatography A, 2007, 1155, 62-73.	3.7	56
85	Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere, 2016, 163, 44-53.	8.2	56
86	Comparison of three multiresidue methods to analyse pesticides in green tea with liquid and gas chromatography/tandem mass spectrometry. Analyst, The, 2013, 138, 921-931.	3.5	54
87	Gas chromatographic determination of pesticides in vegetable samples by sequential positive and negative chemical ionization and tandem mass spectrometric fragmentation using an ion trap analyser. Analyst, The, 2001, 126, 46-51.	3.5	53
88	Study of the effects of operational parameters on multiresidue pesticide analysis by LC–MS/MS. Talanta, 2011, 84, 262-273.	5.5	53
89	Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 6317-6326.	3.7	53
90	Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry. Talanta, 2017, 172, 68-77.	5.5	53

#	Article	IF	CITATIONS
91	High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta, 2019, 191, 180-192.	5.5	53
92	Distribution of chemical residues in the beehive compartments and their transfer to the honeybee brood. Science of the Total Environment, 2020, 710, 136288.	8.0	53
93	Toxicities of triclosan, phenol, and copper sulfate in activated sludge. Environmental Toxicology, 2005, 20, 160-164.	4.0	52
94	Evaluation of nanoflow liquid chromatography high resolution mass spectrometry for pesticide residue analysis in food. Journal of Chromatography A, 2017, 1512, 78-87.	3.7	52
95	Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant. Water Research, 2011, 45, 2331-2341.	11.3	51
96	Benefits and pitfalls of the application of screening methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A, 2011, 1218, 7615-7626.	3.7	51
97	Occurrence and Distribution Study of Residues from Pesticides Applied under Controlled Conditions in the Field during Rice Processing. Journal of Agricultural and Food Chemistry, 2012, 60, 4440-4448.	5.2	50
98	Determination of pesticides in edible oils by liquid chromatography-tandem mass spectrometry employing new generation materials for dispersive solid phase extraction clean-up. Journal of Chromatography A, 2016, 1462, 8-18.	3.7	50
99	Analysis of Herbicides in Olive Oil by Liquid Chromatography Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2006, 54, 6493-6500.	5.2	49
100	Microflow Liquid Chromatography Coupled to Mass Spectrometry—An Approach to Significantly Increase Sensitivity, Decrease Matrix Effects, and Reduce Organic Solvent Usage in Pesticide Residue Analysis. Analytical Chemistry, 2015, 87, 1018-1025.	6.5	49
101	Multiresidue method for trace pesticide analysis in honeybee wax comb by GC-QqQ-MS. Talanta, 2017, 163, 54-64.	5.5	49
102	Multi-residue determination of pesticides in fruit-based soft drinks by fast liquid chromatography time-of-flight mass spectrometry. Talanta, 2010, 81, 1310-1321.	5.5	48
103	Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent. Water Research, 2013, 47, 5546-5556.	11.3	48
104	Feasibility of LC/TOFMS and elemental database searching as a spectral library for pesticides in food. Food Additives and Contaminants, 2006, 23, 1169-1178.	2.0	47
105	Comparative evaluation of the effects of pesticides in acute toxicity luminescence bioassays. Analytica Chimica Acta, 2002, 451, 195-202.	5.4	46
106	Exploration of environmental contaminants in honeybees using GC-TOF-MS and GC-Orbitrap-MS. Science of the Total Environment, 2019, 647, 232-244.	8.0	46
107	Comparative Study of the Main Top-down Approaches for the Estimation of Measurement Uncertainty in Multiresidue Analysis of Pesticides in Fruits and Vegetables. Journal of Agricultural and Food Chemistry, 2011, 59, 7609-7619.	5.2	45
108	Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry. Chemosphere, 2017, 184, 1310-1319.	8.2	43

#	Article	IF	CITATIONS
109	Simultaneous screening of targeted and nonâ€ŧargeted contaminants using an LCâ€QTOFâ€MS system and automated MS/MS library searching. Journal of Mass Spectrometry, 2014, 49, 878-893.	1.6	40
110	Multiresidue method for the analysis of five antifouling agents in marine and coastal waters by gas chromatography–mass spectrometry with large-volume injection. Journal of Chromatography A, 2000, 889, 261-269.	3.7	39
111	Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chemistry, 2019, 295, 274-288.	8.2	39
112	Environmental Risk Assessment of Emerging Pollutants in Water: Approaches Under Horizontal and Vertical EU Legislation. Critical Reviews in Environmental Science and Technology, 2011, 41, 699-731.	12.8	38
113	Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis. Talanta, 2015, 144, 51-61.	5.5	38
114	High-throughput gas chromatography-mass spectrometry analysis of pesticide residues in spices by using the enhanced matrix removal-lipid and the sample dilution approach. Journal of Chromatography A, 2018, 1573, 28-41.	3.7	38
115	Miniaturisation and optimisation of the Dutch mini-Luke extraction method for implementation in the routine multi-residue analysis of pesticides in fruits and vegetables. Food Chemistry, 2016, 192, 668-681.	8.2	37
116	Simultaneous Screening and Target Analytical Approach by Gas Chromatography-Quadrupole-Mass Spectrometry for Pesticide Residues in Fruits and Vegetables. Journal of AOAC INTERNATIONAL, 2009, 92, 1790-1806.	1.5	36
117	Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: Identification of transformation products and pathways. Chemosphere, 2012, 87, 838-844.	8.2	36
118	LC-ESI-QOrbitrapâ"¢ MS/MS within pesticide residue analysis in fruits and vegetables. TrAC - Trends in Analytical Chemistry, 2019, 118, 587-596.	11.4	36
119	Determination of traces of five antifouling agents in water by gas chromatography with positive/negative chemical ionisation and tandem mass spectrometric detection. Journal of Chromatography A, 2001, 938, 103-111.	3.7	34
120	Determination of pesticides in milk-based infant formulas by pressurized liquid extraction followed by gas chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2007, 389, 1833-1840.	3.7	34
121	Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for pesticide residues in food. Journal of Chromatography A, 2018, 1545, 67-74.	3.7	34
122	Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environmental Science and Pollution Research, 2014, 21, 12583-12604.	5.3	33
123	The evaluation of matrix effects in pesticide multi-residue methods via matrix fingerprinting using liquid chromatography electrospray high-resolution mass spectrometry. Analytical Methods, 2016, 8, 4664-4673.	2.7	33
124	Analysis of thermally labile pesticides by on-column injection gas chromatography in fruit and vegetables. Analytical and Bioanalytical Chemistry, 2018, 410, 6861-6871.	3.7	32
125	Shifting the paradigm in gas chromatography mass spectrometry pesticide analysis using high resolution accurate mass spectrometry. Journal of Chromatography A, 2017, 1501, 107-116.	3.7	31
126	Determination of imidacloprid and benzimidazole residues in fruits and vegetables by liquid chromatography-mass spectrometry after ethyl acetate multiresidue extraction. Journal of AOAC INTERNATIONAL, 2000, 83, 748-55.	1.5	30

#	Article	IF	CITATIONS
127	Determination of selected nonâ€authorized insecticides in peppers by liquid chromatography timeâ€ofâ€flight mass spectrometry and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1384-1392.	1.5	28
128	A sensitive and selective method for the determination of selected pesticides in fruit by gas chromatography/mass spectrometry with negative chemical ionization. Journal of Chromatography A, 2012, 1264, 110-116.	3.7	28
129	Ultrasound-assisted extraction based on QuEChERS of pesticide residues in honeybees and determination by LC-MS/MS and GC-MS/MS. Analytical and Bioanalytical Chemistry, 2018, 410, 5195-5210.	3.7	28
130	Photolysis and photocatalysis of bisphenol A: identification of degradation products by liquid chromatography with electrospray ionization/time-of-flight/mass spectrometry (LC/ESI/ToF/MS). Food Additives and Contaminants, 2006, 23, 1242-1251.	2.0	27
131	Supercritical Fluid Chromatography and Gas Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrethroids in Vegetable Matrices: A Comparative Study. Journal of Agricultural and Food Chemistry, 2019, 67, 12626-12632.	5.2	27
132	Validation and application of micro flow liquid chromatography–tandem mass spectrometry for the determination of pesticide residues in fruit jams. Talanta, 2015, 134, 415-424.	5.5	26
133	Screening of environmental contaminants in honey bee wax comb using gas chromatography–high-resolution time-of-flight mass spectrometry. Environmental Science and Pollution Research, 2016, 23, 4609-4620.	5.3	26
134	Evaluation of MS2 workflows in LC-Q-Orbitrap for pesticide multi-residue methods in fruits and vegetables. Analytical and Bioanalytical Chemistry, 2017, 409, 5389-5400.	3.7	26
135	Dendrimer-functionalized electrospun nanofibres as dual-action water treatment membranes. Science of the Total Environment, 2017, 601-602, 732-740.	8.0	26
136	Coupling Ion Chromatography to Q-Orbitrap for the Fast and Robust Analysis of Anionic Pesticides in Fruits and Vegetables. Journal of AOAC INTERNATIONAL, 2018, 101, 352-359.	1.5	26
137	Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study. Analytical Methods, 2019, 11, 2123-2128.	2.7	26
138	Presence and distribution of pesticides in apicultural products: A critical appraisal. TrAC - Trends in Analytical Chemistry, 2022, 146, 116506.	11.4	26
139	Determination of methyl tertbutyl ether and tertbutyl alcohol in seawater samples using purge-and-trap enrichment coupled to gas chromatography with atomic emission and mass spectrometric detection. Journal of Chromatography A, 2003, 999, 81-90.	3.7	25
140	Determination of nicotine in mushrooms by various GC/MS- and LC/MS-based methods. Analytical and Bioanalytical Chemistry, 2012, 402, 935-943.	3.7	25
141	Validation of a multiclass multiresidue method and monitoring results for 210 pesticides in fruits and vegetables by gas chromatography-triple quadrupole mass spectrometry. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 557-568.	1.5	25
142	Laboratory assessment by combined z score values in proficiency tests: experience gained through the European Union proficiency tests for pesticide residues in fruits and vegetables. Analytical and Bioanalytical Chemistry, 2010, 397, 3061-3070.	3.7	24
143	Life Cycle Assessment of biomass production in a Mediterranean greenhouse using different water sources: Groundwater, treated wastewater and desalinated seawater. Agricultural Systems, 2010, 103, 1-9.	6.1	24
144	Viability of honeybee colonies exposed to sunflowers grown from seeds treated with the neonicotinoids thiamethoxam and clothianidin. Chemosphere, 2018, 202, 609-617.	8.2	24

#	Article	IF	CITATIONS
145	Supercritical fluid chromatography coupled to tandem mass spectrometry for the analysis of pesticide residues in dried spices. Benefits and drawbacks. Analytica Chimica Acta, 2019, 1059, 124-135.	5.4	23
146	Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Analytical Methods, 2015, 7, 9158-9165.	2.7	22
147	Negative chemical ionization gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry and automated accurate mass data processing for determination of pesticides in fruit and vegetables. Analytical and Bioanalytical Chemistry, 2015, 407, 6327-6343.	3.7	21
148	Proficiency test on the determination of pesticide residues in grapes with multi-residue methods. Journal of Chromatography A, 2015, 1395, 143-151.	3.7	21
149	Improvements in identification and quantitation of pesticide residues in food by LC-QTOF using sequential mass window acquisition (SWATH®). Analytical Methods, 2018, 10, 2821-2833.	2.7	21
150	Toxicity of Single and Mixed Contaminants in Seawater Measured with Acute Toxicity Bioassays. Scientific World Journal, The, 2002, 2, 1115-1120.	2.1	20
151	A new method for monitoring oestrogens,N-octylphenol, and bisphenol A in wastewater treatment plants by solid-phase extraction–gas chromatography–tandem mass spectrometry. International Journal of Environmental Analytical Chemistry, 2006, 86, 3-13.	3.3	20
152	Method development and validation for determination of thiosultap sodium, thiocyclam, and nereistoxin in pepper matrix. Analytical and Bioanalytical Chemistry, 2010, 398, 2299-2306.	3.7	20
153	Evaluation of Relevant Time-of-Flight-MS Parameters Used in HPLC/MS Full-Scan Screening Methods for Pesticide Residues. Journal of AOAC INTERNATIONAL, 2011, 94, 1674-1684.	1.5	20
154	Investigation of Galaxolide degradation products generated under oxidative and irradiation processes by liquid chromatography/hybrid quadrupole timeâ€ofâ€flight mass spectrometry and comprehensive twoâ€dimensional gas chromatography/timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 1237-1250.	1.5	20
155	European Union proficiency tests for pesticide residues in fruit and vegetables from 2009 to 2016: Overview of the results and main achievements. Food Control, 2017, 82, 101-113.	5.5	20
156	Further improvements in pesticide residue analysis in food by applying gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) technologies. Analytical and Bioanalytical Chemistry, 2018, 410, 5491-5506.	3.7	20
157	Pesticide Residue Analysis in Fruit- and Vegetable-Based Baby Foods Using GC-Orbitrap MS. Journal of AOAC INTERNATIONAL, 2018, 101, 374-382.	1.5	20
158	Improving the simultaneous target and non-target analysis LC-amenable pesticide residues using high speed Orbitrap mass spectrometry with combined multiple acquisition modes. Talanta, 2021, 228, 122241.	5.5	20
159	Determination of chlorothalonil in difficult-to-analyse vegetable matrices using various multiresidue methods. Analyst, The, 2012, 137, 2513.	3.5	19
160	Parts per trillion level determination of endocrine-disrupting chlorinated compounds in river water and wastewater effluent by stir-bar-sorptive extraction followed by gas chromatography–triple quadrupole mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 404, 1993-2006.	3.7	19
161	Supercritical fluid chromatography separation of chiral pesticides: Unique capabilities to study cyhalothrin and metalaxyl as examples. Journal of Chromatography A, 2020, 1620, 461007.	3.7	19
162	Analysis of illegal dyes in food by LC/TOF-MS. International Journal of Environmental Analytical Chemistry, 2007, 87, 999-1012.	3.3	18

#	Article	IF	CITATIONS
163	Accurate mass analysis and structure elucidation of selenium metabolites by liquid chromatography electrospray time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2007, 22, 947-959.	3.0	17
164	Automated dynamic headspace followed by a comprehensive two-dimensional gas chromatography full scan time-of-flight mass spectrometry method for screening of volatile organic compounds (VOCs) in water. Analytical Methods, 2013, 5, 1165.	2.7	17
165	Determination study of contaminants of emerging concern at trace levels in agricultural soil. A pilot study. Science of the Total Environment, 2021, 782, 146759.	8.0	17
166	Determination of selected pesticides by GC with simultaneous detection by MS (NCI) and μ-ECD in fruit and vegetable matrices. Analytical and Bioanalytical Chemistry, 2012, 402, 1365-1372.	3.7	16
167	Pesticide residues evaluation of organic crops. A critical appraisal. Food Chemistry: X, 2020, 5, 100079.	4.3	16
168	Two new competitive ELISA methods for the determination of caffeine and cotinine in wastewater and river waters. Analytical Methods, 2012, 4, 3364.	2.7	15
169	Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain). Environmental Science and Pollution Research, 2012, 19, 467-481.	5.3	15
170	Development of an indirect enzyme immunoassay for the determination of thiabendazole in white and red wines. International Journal of Environmental Analytical Chemistry, 2015, 95, 1299-1309.	3.3	15
171	Characterization of non-intentionally added substances (NIAS) and zinc oxide nanoparticle release from evaluation of new antimicrobial food contact materials by both LC-QTOF-MS, GC-QTOF-MS and ICP-MS. Analytical Methods, 2016, 8, 7209-7216.	2.7	15
172	Overcoming difficulties in the evaluation of captan and folpet residues by supercritical fluid chromatography coupled to mass spectrometry. Talanta, 2021, 223, 121714.	5.5	15
173	APIStrip, a new tool for environmental contaminant sampling through honeybee colonies. Science of the Total Environment, 2020, 729, 138948.	8.0	15
174	The toxic unit approach as a risk indicator in honey bees surveillance programmes: A case of study in Apis mellifera iberiensis. Science of the Total Environment, 2020, 698, 134208.	8.0	14
175	Identification and quantification of poly(amidoamine) PAMAM dendrimers of generations 0 to 3 by liquid chromatography/hybrid quadrupole timeâ€ofâ€flight mass spectrometry in aqueous medium. Rapid Communications in Mass Spectrometry, 2013, 27, 747-762.	1.5	13
176	Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation. Journal of Hazardous Materials, 2014, 266, 102-113.	12.4	13
177	"Analysis of pesticide residues in fruits and vegetables using gas chromatography-high resolution time-of-flight mass spectrometry― Analytical Methods, 2015, 7, 2162-2171.	2.7	13
178	Fate, modeling, and human health risk of organic contaminants present in tomato plants irrigated with reclaimed water under real-world field conditions. Science of the Total Environment, 2022, 806, 150909.	8.0	13
179	Chromatography-mass spectrometry and toxicity evaluation of selected contaminants in seawater. Chromatographia, 2002, 56, 199-206.	1.3	12
180	In vitro dose–response effects of poly(amidoamine) dendrimers [amino-terminated and surface-modified with N-(2-hydroxydodecyl) groups] and quantitative determination by a liquid chromatography–hybrid quadrupole/time-of-flight mass spectrometry based method. Analytical and Bioanalytical Chemistry, 2012, 404, 2749-2763.	3.7	12

#	Article	IF	CITATIONS
181	A three-year large scale study on the risk of honey bee colony exposure to blooming sunflowers grown from seeds treated with thiamethoxam and clothianidin neonicotinoids. Chemosphere, 2021, 262, 127735.	8.2	12
182	Application of HPLC–TOF-MS and HPLC–QTOF-MS/MS for Pesticide Residues Analysis in Fruit and Vegetable Matrices. Comprehensive Analytical Chemistry, 2012, 58, 1-60.	1.3	11
183	Antimicrobial organic–inorganic composite membranes including sepiolite-supported nanometals. RSC Advances, 2017, 7, 2323-2332.	3.6	11
184	Liquid chromatography versus supercritical fluid chromatography coupled to mass spectrometry: a comparative study of performance for multiresidue analysis of pesticides. Analytical and Bioanalytical Chemistry, 2021, 413, 5849-5857.	3.7	11
185	Multilaboratory Collaborative Study of a Nontarget Data Acquisition for Target Analysis (nDATA) Workflow Using Liquid Chromatography-High-Resolution Accurate Mass Spectrometry for Pesticide Screening in Fruits and Vegetables. Journal of Agricultural and Food Chemistry, 2021, 69, 13200-13216.	5.2	11
186	Efficiency Evaluation of the Main Multiresidue Methods Used in Europe for the Analysis of Amitraz and Its Major Metabolites. Journal of AOAC INTERNATIONAL, 2010, 93, 380-388.	1.5	10
187	Evaluation of segmented non-target data acquisition (SWATH/vDIA) in a QToF and QOrbitrap for pesticide residue analysis. Analytical Methods, 2020, 12, 2027-2038.	2.7	10
188	Presence of anthraquinone in coffee and tea samples. An improved methodology based on mass spectrometry and a pilot monitoring programme. Analytical Methods, 2021, 13, 99-109.	2.7	10
189	Chemical and Ecotoxicological Assessment of Dendrimers in the Aquatic Environment. Comprehensive Analytical Chemistry, 2012, , 197-233.	1.3	9
190	Qualitative and quantitative analysis of poly(amidoamine) dendrimers in an aqueous matrix by liquid chromatography–electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS). Analytical and Bioanalytical Chemistry, 2013, 405, 5901-5914.	3.7	9
191	Simultaneous combination of MS2 workflows for pesticide multiresidue analysis with LC-QOrbitrap. Analytical Methods, 2017, 9, 2256-2264.	2.7	9
192	Analysis by LC-MS/MS of polar pesticides in fruits and vegetables using new hybrid stationary phase. MethodsX, 2021, 8, 101306.	1.6	9
193	Removal of pesticide residues from beeswax using a methanol extraction-based procedure: A pilot-scale study. Environmental Technology and Innovation, 2021, 23, 101606.	6.1	9
194	Dissipation and cross-contamination of miticides in apiculture. Evaluation by APIStrip-based sampling. Chemosphere, 2021, 280, 130783.	8.2	8
195	Determination of Metham and Thiram in Soils and Vegetables Grown in Greenhouses. International Journal of Environmental Analytical Chemistry, 1994, 56, 1-10.	3.3	7
196	Laboratory Triple-A rating: A new approach to evaluate performance-underperformance of laboratories participating in EU proficiency tests for multi-residue analysis of pesticides in fruits and vegetables. Food Control, 2016, 63, 255-258.	5.5	7
197	Selectivity enhancement using sequential mass isolation window acquisition with hybrid quadrupole time-of-flight mass spectrometry for pesticide residues. Journal of Chromatography A, 2019, 1591, 99-109.	3.7	7
198	Environmental monitoring study of pesticide contamination in Denmark through honey bee colonies using APIStrip-based sampling. Environmental Pollution, 2021, 290, 117888.	7.5	7

#	Article	IF	CITATIONS
199	Ion chromatography coupled to Q-Orbitrap for the analysis of formic and oxalic acid in beehive matrices: a field study. Analytical and Bioanalytical Chemistry, 2022, 414, 2419-2430.	3.7	7
200	Inclusion of 1-Naphthylacetic Acid and 2-(1-Naphthyl)acetamide into Three Typical Multiresidue Methods for LC/MS/MS Analysis of Tomatoes and Zucchini. Journal of AOAC INTERNATIONAL, 2012, 95, 1520-1527.	1.5	6
201	The Potential of Ambient Desorption Ionization Methods Combined with High-Resolution Mass Spectrometry for Pesticide Testing in Food. Comprehensive Analytical Chemistry, 2012, , 339-366.	1.3	6
202	Quantitative determination of poly(amidoamine) dendrimers in urine by liquid chromatography/electrospray ionization hybrid quadrupole linear ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 2519-2529.	1.5	6
203	Analysis and evaluation of (neuro)peptides in honey bees exposed to pesticides in field conditions. Environmental Pollution, 2018, 235, 750-760.	7.5	6
204	Chemical Evaluation of Water Treatment Processes by LC–(Q)TOF-MS. Comprehensive Analytical Chemistry, 2012, , 61-109.	1.3	5
205	Validation of a quick and easy extraction method for the determination of emerging contaminants and pesticide residues in agricultural soils. MethodsX, 2021, 8, 101290.	1.6	5
206	Evaluation of Pesticides in Wastewaters. A Combined (Chemical and Biological) Analytical Approach. , 0, , 53-77.		4
207	Determination of hormonally active chlorinated chemicals in waters at sub $\hat{A}\mu g/L$ level using stir bar sorptive extraction-liquid desorption followed by negative chemical ionization-gas chromatography triple quadrupole mass spectrometry. International Journal of Environmental Analytical Chemistry, 2014, 94, 48-64.	3.3	4
208	Monitoring of pesticide residues in crops irrigated with reclaimed water by a multiresidue method based on modified QuEChERS. Analytical Methods, 2021, 13, 4131-4142.	2.7	4
209	Occurrence of pesticide residues in Brazilian <i>Apis mellifera</i> beeswax by gas chromatography-tandem mass spectrometry and pesticide hazard evaluation. Journal of Apicultural Research, 0, , 1-7.	1.5	4
210	Use of high-resolution mass spectrometry for the first-time identification of gerberin as a tentative marker of the fraudulent organic production of tomatoes. Journal of Food Composition and Analysis, 2022, 112, 104662.	3.9	4
211	Pesticides in Food. Analytical and Bioanalytical Chemistry, 2007, 389, 1661-1661.	3.7	3
212	Application of Orbitrap Mass Spectrometry in Food Analysis. Journal of AOAC INTERNATIONAL, 2018, 101, 335-335.	1.5	3
213	First national survey of residues of active substances in honeybee apiaries across Spain between 2012 and 2016. Science of the Total Environment, 2022, 838, 155614.	8.0	3
214	Chapter 9 LC-MS. II: Applications for pesticide food analysis. Comprehensive Analytical Chemistry, 2005, , 403-437.	1.3	2
215	Dual-channel chromatography a smart way to improve the analysis efficiency in liquid chromatography coupled to mass spectrometry. Journal of Chromatography A, 2020, 1633, 461614.	3.7	2
216	Sample processing and preparation optimisation with three different solvents for the residual analysis of 310 pesticides in three herbal plants by LC-MS/MS. International Journal of Environmental Analytical Chemistry, 0, , 1-18.	3.3	2

#	Article	IF	CITATIONS
217	Cutting-edge approach using dual-channel chromatography to overcome the sensitivity issues associated with polarity switching in pesticide residues analysis. Analytica Chimica Acta, 2021, 1180, 338875.	5.4	2
218	Development of Avocado Reference Material for Pesticide Residue Analysis. Journal of AOAC INTERNATIONAL, 2022, 105, 1051-1059.	1.5	1
219	Fennelâ€seeds extract as an analyte protectant for the GCâ€MS/MS residue analysis of 182 pesticide in strawberries: Comparing the manual mixing and sandwich injection. Journal of Chromatography Open, 2022, 2, 100056.	2.2	1
220	Evaluation of Antifouling Booster Biocides in Marine Water and Sediments Based on Mass Spectrometric Techniques. , 0, , 121-153.		0