
Shuxun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044426/publications.pdf Version: 2024-02-01

ςμιινιίν γιι

#	Article	IF	CITATIONS
1	Overexpression of a Cotton Aquaporin Gene GhTIP1;1-like Confers Cold Tolerance in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 1361.	4.1	9
2	The MADS transcription factor GhFYF is involved in abiotic stress responses in upland cotton (Gossypium hirsutum L.). Gene, 2022, 815, 146138.	2.2	6
3	A Comprehensive Identification and Function Analysis of Serine/Arginine-Rich (SR) Proteins in Cotton (Gossypium spp.). International Journal of Molecular Sciences, 2022, 23, 4566.	4.1	4
4	Characterization and Functional Analysis of GhNAC82, A NAM Domain Gene, Coordinates the Leaf Senescence in Upland Cotton (Gossypium hirsutum L.). Plants, 2022, 11, 1491.	3.5	3
5	The MADS transcription factor GhAP1.7 coordinates the flowering regulatory pathway in upland cotton (Gossypium hirsutum L.). Gene, 2021, 769, 145235.	2.2	10
6	Highâ€resolution temporal dynamic transcriptome landscape reveals a <i>ChCAL</i> â€mediated flowering regulatory pathway in cotton (<i>Gossypium hirsutum</i> L.). Plant Biotechnology Journal, 2021, 19, 153-166.	8.3	27
7	Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (<i>Gossypium hirsutum</i> L.). Plant Biotechnology Journal, 2021, 19, 109-123.	8.3	42
8	GhGPAT12/25 Are Essential for the Formation of Anther Cuticle and Pollen Exine in Cotton (Gossypium) Tj ETQq(0.0 rgBT 3.6	Oyerlock 10
9	QTL mapping and candidate gene identification of lint percentage based on a recombinant inbred line population of upland cotton. Furbytica, 2021, 217, 1	1.2	2

9	population of upland cotton. Euphytica, 2021, 217, 1.	1.2	2
10	Overexpression of GhMPK3 from Cotton Enhances Cold, Drought, and Salt Stress in Arabidopsis. Agronomy, 2021, 11, 1049.	3.0	15
11	Genome wide identification and characterization of light-harvesting Chloro a/b binding (LHC) genes reveals their potential role in enhancing drought tolerance in Gossypium hirsutum. Journal of Cotton Research, 2021, 4, .	2.5	8
12	Comprehensive identification and expression analysis of B-Box genes in cotton. BMC Genomics, 2021, 22, 439.	2.8	12
13	Genome-Wide Identification of the Early Flowering 4 (ELF4) Gene Family in Cotton and Silent GhELF4-1 and GhEFL3-6 Decreased Cotton Stress Resistance. Frontiers in Genetics, 2021, 12, 686852.	2.3	1
14	Nonâ€functional <i>GoFLA19s</i> are responsible for the male sterility caused by hybrid breakdown in cotton (<i>Gossypium</i> spp.). Plant Journal, 2021, 107, 1198-1212.	5.7	8
15	Genetic variation in <i>MYB5_A12</i> is associated with fibre initiation and elongation in tetraploid cotton. Plant Biotechnology Journal, 2021, 19, 1892-1894.	8.3	14
16	GhLUX1 and GhELF3 Are Two Components of the Circadian Clock That Regulate Flowering Time of Gossypium hirsutum. Frontiers in Plant Science, 2021, 12, 691489.	3.6	4
17	A comprehensive identification and function analysis of the ATBS1 Interacting Factors (AIFs) gene family of Gossypium species in fiber development and under multiple stresses. Industrial Crops and Products, 2021, 171, 113853.	5.2	2
18	Phylogenetic Analysis of the Membrane Attack Complex/Perforin Domain-Containing Proteins in Gossypium and the Role of GhMACPF26 in Cotton Under Cold Stress. Frontiers in Plant Science, 2021, 12, 684227.	3.6	6

Sнихим Yu

#	Article	IF	CITATIONS
19	Uncovering Novel Genomic Regions and Candidate Genes for Senescence-Related Traits by Genome-Wide Association Studies in Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2021, 12, 809522.	3.6	3
20	Evolution and Stress Responses of CLO Genes and Potential Function of the GhCLO06 Gene in Salt Resistance of Cotton. Frontiers in Plant Science, 2021, 12, 801239.	3.6	3
21	QTL and candidate gene identification of the node of the first fruiting branch (NFFB) by QTL-seq in upland cotton (Gossypium hirsutum L.). BMC Genomics, 2021, 22, 882.	2.8	11
22	Pectate lyase-like Gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. Plant Science, 2020, 293, 110395.	3.6	23
23	Genome-wide identification of NF-YA gene family in cotton and the positive role of GhNF-YA10 and GhNF-YA23 in salt tolerance. International Journal of Biological Macromolecules, 2020, 165, 2103-2115.	7.5	12
24	Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line. BMC Genomics, 2020, 21, 825.	2.8	7
25	A comprehensive analysis of cotton VQ gene superfamily reveals their potential and extensive roles in regulating cotton abiotic stress. BMC Genomics, 2020, 21, 795.	2.8	17
26	Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton (Gossypium hirsutum L.) Genotypes at the Seedling Stage. International Journal of Molecular Sciences, 2020, 21, 5095.	4.1	24
27	Overexpression of CDSP32 (GhTRX134) Cotton Gene Enhances Drought, Salt, and Oxidative Stress Tolerance in Arabidopsis. Plants, 2020, 9, 1388.	3.5	20
28	Genome-wide identification and expression patterns analysis of the RPD3/HDA1 gene family in cotton. BMC Genomics, 2020, 21, 643.	2.8	11
29	Transcriptome Analysis Reveals a Gene Expression Pattern Associated with Fuzz Fiber Initiation Induced by High Temperature in Gossypium barbadense. Genes, 2020, 11, 1066.	2.4	9
30	Genome-Wide Identification and Expression Analysis of the NHX (Sodium/Hydrogen Antiporter) Gene Family in Cotton. Frontiers in Genetics, 2020, 11, 964.	2.3	19
31	Identification and profiling of microRNAs and differentially expressed genes during anther development between a genetic male-sterile mutant and its wildtype cotton via high-throughput RNA sequencing. Molecular Genetics and Genomics, 2020, 295, 645-660.	2.1	8
32	Genome-wide identification and characterization of multiple C2 domains and transmembrane region proteins in Gossypium hirsutum. BMC Genomics, 2020, 21, 445.	2.8	6
33	The Cotton BEL1-Like Transcription Factor GhBLH7-D06 Negatively Regulates the Defense Response against Verticillium dahliae. International Journal of Molecular Sciences, 2020, 21, 7126.	4.1	18
34	A Comparative Genome-Wide Analysis of the R2R3-MYB Gene Family Among Four Gossypium Species and Their Sequence Variation and Association With Fiber Quality Traits in an Interspecific G. hirsutum × G. barbadense Population. Frontiers in Genetics, 2019, 10, 741.	2.3	16
35	Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines. BMC Genomics, 2019, 20, 633.	2.8	29
36	Genome-wide identification and expression analysis of the BURP domain-containing genes in Gossypium hirsutum. BMC Genomics, 2019, 20, 558.	2.8	17

Sнихим Yu

#	Article	IF	CITATIONS
37	Genome-wide identification and characterization of TALE superfamily genes in cotton reveals their functions in regulating secondary cell wall biosynthesis. BMC Plant Biology, 2019, 19, 432.	3.6	31
38	Analysis of the MIR160 gene family and the role of MIR160a_A05 in regulating fiber length in cotton. Planta, 2019, 250, 2147-2158.	3.2	17
39	Genome-Wide Identification and Characterization of Glycosyltransferase Family 47 in Cotton. Frontiers in Genetics, 2019, 10, 824.	2.3	26
40	Identification of Loci and Candidate Genes Responsible for Fiber Length in Upland Cotton (Gossypium) Tj ETQqO	0	Overlock 10 ⁻ 20
41	QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theoretical and Applied Genetics, 2019, 132, 2663-2676.	3.6	48
42	Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. Plant Science, 2019, 286, 89-97.	3.6	35
43	A comparative analysis of small RNAs between two Upland cotton backcross inbred lines with different fiber length: Expression and distribution. Crop Journal, 2019, 7, 198-208.	5.2	7
44	The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton (Gossypium hirsutum L.)Â. BMC Plant Biology, 2019, 19, 116.	3.6	39
45	Fine mapping and molecular characterization of the virescent gene vsp in Upland cotton (Gossypium) Tj ETQq1 1	0,784314	rgBT /Overle
46	The Cotton GhWRKY91 Transcription Factor Mediates Leaf Senescence and Responses to Drought Stress in Transgenic Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1352.	3.6	35

47	Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland A— Pima cotton. Molecular Biology Reports, 2019, 46, 1199-1212.	2.3	5
48	Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theoretical and Applied Genetics, 2018, 131, 1299-1314.	3.6	62
49	QTL delineation for five fiber quality traits based on an intra-specific Gossypium hirsutum L. recombinant inbred line population. Molecular Genetics and Genomics, 2018, 293, 831-843	2.1	10

Fine mapping and candidate gene analysis of the virescent gene v 1 in Upland cotton (Gossypium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 $\frac{12}{12}$

51	Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics, 2018, 19, 882.	2.8	33
52	Identification, Expression, and Functional Analysis of the Group IId WRKY Subfamily in Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2018, 9, 1684.	3.6	32
53	Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton (Gossypium hirsutum L.). BMC Genomics, 2018, 19, 661.	2.8	32
54	Genome- Wide Analysis and Characterization of the TRX Gene Family in Upland Cotton. Tropical Plant Biology, 2018, 11, 119-130.	1.9	15

Sнихим Yu

#	Article	IF	CITATIONS
55	Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton (Gossypium hirsutum L.). BMC Genetics, 2018, 19, 48.	2.7	32
56	Functional analysis of nine cotton genes related to leaf senescence in Gossypium hirsutum L. Physiology and Molecular Biology of Plants, 2018, 24, 729-739.	3.1	4
57	Transcriptome analysis of nitric oxide-responsive genes in upland cotton (Gossypium hirsutum). PLoS ONE, 2018, 13, e0192367.	2.5	23
58	Identification of the group IIa WRKY subfamily and the functional analysis of GhWRKY17 in upland cotton (Gossypium hirsutum L.). PLoS ONE, 2018, 13, e0191681.	2.5	33
59	Identification of GT Factors in Response to Stresses and Leaf Senescence in Gossypium hirsutum L Journal of Plant Growth Regulation, 2017, 36, 22-42.	5.1	2
60	A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics, 2017, 18, 218.	2.8	32
61	Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated <i>Gossypium hirsutum</i> L. Journal of Proteome Research, 2017, 16, 2811-2824.	3.7	11
62	Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. BMC Genomics, 2017, 18, 427.	2.8	32
63	An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. Frontiers in Plant Science, 2017, 8, 1657.	3.6	32
64	iTRAQ-Based Quantitative Proteomic Analysis Reveals Cold Responsive Proteins Involved in Leaf Senescence in Upland Cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences, 2017, 18, 1984.	4.1	16
65	Global analysis of DNA methylation in young (J1) and senescent (J2) Gossypium hirsutum L. cotyledons by MeDIP-Seq. PLoS ONE, 2017, 12, e0179141.	2.5	12
66	A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton. BMC Genomics, 2017, 18, 815.	2.8	47
67	Dissecting Genetic Network of Fruit Branch Traits in Upland Cotton by Association Mapping Using SSR Markers. PLoS ONE, 2017, 12, e0162815.	2.5	8
68	High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS ONE, 2017, 12, e0182918.	2.5	40
69	Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum) Tj ETQq1	1.0.7843 2.5	14 rgBT /Ov
70	High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics, 2016, 17, 909.	2.8	51
71	RNA-Seq-Mediated Transcriptome Analysis of a Fiberless Mutant Cotton and Its Possible Origin Based on SNP Markers. PLoS ONE, 2016, 11, e0151994.	2.5	28
72	Detection of Favorable QTL Alleles and Candidate Genes for Lint Percentage by GWAS in Chinese Upland Cotton. Frontiers in Plant Science, 2016, 7, 1576.	3.6	119

Shuxun Yu

#	Article	IF	CITATIONS
73	Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics, 2016, 17, 687.	2.8	138
74	Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Scientific Reports, 2016, 6, 38496.	3.3	68
75	A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutumÂ×ÂGossypium barbadense population. Molecular Genetics and Genomics, 2016, 291, 1749-1767.	2.1	14
76	Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Plant Physiology and Biochemistry, 2016, 103, 106-119.	5.8	12
77	GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L). Gene, 2016, 576, 268-274.	2.2	34
78	Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf ! 26
79	iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). Journal of Proteomics, 2015, 126, 68-81.	2.4	57
80	Genome-wide analysis of the family 1 glycosyltransferases in cotton. Molecular Genetics and Genomics, 2015, 290, 1805-1818.	2.1	47
81	Genome sequence of cultivated Upland cotton (GossypiumÂhirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33, 524-530.	17.5	1,064
82	Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. BMC Plant Biology, 2015, 15, 43.	3.6	85
83	Data for proteomic profiling of Anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). Data in Brief, 2015, 4, 500-509.	1.0	6
84	Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Molecular Genetics and Genomics, 2015, 290, 115-126.	2.1	43
85	Upland Cotton Gene GhFPF1 Confers Promotion of Flowering Time and Shade-Avoidance Responses in Arabidopsis thaliana. PLoS ONE, 2014, 9, e91869.	2.5	23
86	Proteomic analysis of anthers from wild-type and photosensitive genetic male sterile mutant cotton (Gossypium hirsutum L.). BMC Plant Biology, 2014, 14, 390.	3.6	19
87	Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L. Plant Cell, Tissue and Organ Culture, 2014, 117, 167-186.	2.3	21
88	Identification and Profiling of Known and Novel Fiber MicroRNAs during the Secondary Wall Thickening Stage in Cotton (Gossypium hirsutum) via High-Throughput Sequencing. Journal of Genetics and Genomics, 2014, 41, 553-556.	3.9	3
89	Quantitative phosphoproteomic profiling of fiber differentiation and initiation in a fiberless mutant of cotton. BMC Genomics, 2014, 15, 466.	2.8	33
90	Genome-wide analysis of the WRKY gene family in cotton. Molecular Genetics and Genomics, 2014, 289, 1103-1121.	2.1	118

Ѕнихим Үи

#	Article	IF	CITATIONS
91	Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46, 567-572.	21.4	883
92	Quantitative Phosphoproteomics Analysis of Nitric Oxide–Responsive Phosphoproteins in Cotton Leaf. PLoS ONE, 2014, 9, e94261.	2.5	34
93	Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Genomics, 2013, 14, 97.	2.8	66
94	Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutumÂA—ÂGossypium barbadense backcross inbred line population. Theoretical and Applied Genetics, 2013, 126, 275-287.	3.6	164
95	Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium) Tj ETQq1 1 0.7843	14 _{.rg} BT /C 2.2	Verlock 10
96	<scp>M</scp> olecular Cloning and Function Analysis of Two <scp><i>SQUAMOSA</i></scp> â€ <scp>L</scp> ike <scp>MADS</scp> â€ <scp>B</scp> ox Genes From <i>Gossypium hirsutum</i> L Journal of Integrative Plant Biology, 2013, 55, 597-607.	8.5	17
97	Selection and Characterization of a Novel Photoperiodâ€ <scp>S</scp> ensitive Male Sterile Line in Upland Cotton. Journal of Integrative Plant Biology, 2013, 55, 608-618.	8.5	15
98	Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biology, 2013, 13, 66.	3.6	65
99	Generation and Analysis of a Large-Scale Expressed Sequence Tag Database from a Full-Length Enriched cDNA Library of Developing Leaves of Gossypium hirsutum L. PLoS ONE, 2013, 8, e76443.	2.5	10
100	Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutumÂ×ÂGossypium barbadense backcross inbred line population. Euphytica, 2012, 187, 191-201.	1.2	75
101	Cytological and genetic analysis of a virescent mutant in upland cotton (Gossypium hirsutum L.). Euphytica, 2012, 187, 235-245.	1.2	15
102	The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44, 1098-1103.	21.4	935
103	Label-Free Quantitative Proteomics Analysis of Cotton Leaf Response to Nitric Oxide. Journal of Proteome Research, 2011, 10, 5416-5432.	3.7	35
104	Toward Sequencing Cotton (<i>Gossypium</i>) Genomes: Figure 1 Plant Physiology, 2007, 145, 1303-1310.	4.8	390
105	AFLPâ€RGA Markers in Comparison with RGA and AFLP in Cultivated Tetraploid Cotton. Crop Science, 2007, 47, 180-187.	1.8	24
106	High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers. Journal of Integrative Plant Biology, 2007, 49, 716-724.	8.5	65
107	Detection of Stable Elite Haplotypes and Potential Candidate Genes of Boll Weight Across Multiple Environments via GWAS in Upland Cotton. Frontiers in Plant Science, 0, 13, .	3.6	6