
Sandra Steiger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The origin and dynamic evolution of chemical information transfer. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 970-979.	2.6	156
2	The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota. Nature Communications, 2017, 8, 15186.	12.8	112
3	Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle. Scientific Reports, 2016, 6, 25409.	3.3	97
4	Bigger mothers are better mothers: disentangling size-related prenatal and postnatal maternal effects. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131225.	2.6	91
5	Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proceedings of the United States of America, 2018, 115, 11274-11279.	7.1	91
6	The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2211-2220.	2.6	84
7	The Role of Sexual Selection in the Evolution of Chemical Signals in Insects. Insects, 2014, 5, 423-438.	2.2	84
8	Unearthing carrion beetles' microbiome: characterization of bacterial and fungal hindgut communities across the <scp>S</scp> ilphidae. Molecular Ecology, 2014, 23, 1251-1267.	3.9	77
9	The Coolidge effect, individual recognition and selection for distinctive cuticular signatures in a burying beetle. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1831-1838.	2.6	75
10	Evolutionary origin of insect pheromones. Current Opinion in Insect Science, 2017, 24, 36-42.	4.4	61
11	From facultative to obligatory parental care: Interspecific variation in offspring dependency on post-hatching care in burying beetles. Scientific Reports, 2016, 6, 29323.	3.3	50
12	Sex differences in immunity and rapid upregulation of immune defence during parental care in the burying beetle, <i>Nicrophorus orbicollis</i> . Functional Ecology, 2011, 25, 1368-1378.	3.6	49
13	Cuticular hydrocarbons as a basis for chemosensory selfâ€referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecology Letters, 2013, 16, 346-353.	6.4	49
14	Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132353.	2.6	48
15	A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. Nature Communications, 2016, 7, 11035.	12.8	48
16	Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150832.	2.6	43
17	Surface Chemicals Inform about Sex and Breeding Status in the Biparental Burying Beetle <i>Nicrophorus vespilloides</i> . Ethology, 2009, 115, 178-185.	1.1	36
18	Acceptance threshold theory can explain occurrence of homosexual behaviour. Biology Letters, 2015, 11, 20140603.	2.3	35

SANDRA STEIGER

#	Article	IF	CITATIONS
19	â€~True' and â€~untrue' individual recognition: suggestion of a less restrictive definition. Trends in Ecology and Evolution, 2008, 23, 355.	8.7	32
20	Correlated changes in breeding status and polyunsaturated cuticular hydrocarbons: the chemical basis of nestmate recognition in the burying beetle Nicrophorus vespilloides?. Behavioral Ecology and Sociobiology, 2008, 62, 1053-1060.	1.4	31
21	Maternal nutritional condition and genetic differentiation affect brood size and offspring body size in Nicrophorus. Zoology, 2007, 110, 360-368.	1.2	30
22	Too Fresh Is Unattractive! The Attraction of Newly Emerged Nicrophorus vespilloides Females to Odour Bouquets of Large Cadavers at Various Stages of Decomposition. PLoS ONE, 2013, 8, e58524.	2.5	30
23	Function of bacterial community dynamics in the formation of cadaveric semiochemicals during <i>in situ</i> carcass decomposition. Environmental Microbiology, 2017, 19, 3310-3322.	3.8	26
24	(E)-Methylgeranate, a chemical signal of juvenile hormone titre and its role in the partner recognition system of burying beetles. Animal Behaviour, 2010, 79, 17-24.	1.9	25
25	Dominance status and carcass availability affect the outcome of sperm competition in burying beetles. Behavioral Ecology, 2011, 22, 1079-1087.	2.2	22
26	Dominance status and sex influence nutritional state and immunity in burying beetles Nicrophorus orbicollis. Behavioral Ecology, 2012, 23, 1126-1132.	2.2	22
27	Staying with the young enhances the fathers' attractiveness in burying beetles. Evolution; International Journal of Organic Evolution, 2017, 71, 985-994.	2.3	22
28	From class-specific to individual discrimination: acceptance threshold changes with risk in the partner recognition system of the burying beetle Nicrophorus vespilloides. Animal Behaviour, 2010, 80, 607-613.	1.9	20
29	Species divergence in offspring begging and parental provisioning is linked to nutritional dependency. Behavioral Ecology, 2018, 29, 42-50.	2.2	20
30	Beyond Cuticular Hydrocarbons: Chemically Mediated Mate Recognition in the Subsocial Burying Beetle Nicrophorus vespilloides. Journal of Chemical Ecology, 2017, 43, 84-93.	1.8	19
31	Adaptive consequences and heritable basis of asynchronous hatching in <i>Nicrophorus vespilloides</i> . Oikos, 2008, 117, 899-907.	2.7	18
32	Forest habitat parameters influence abundance and diversity of cadaver-visiting dung beetles in Central Europe. Royal Society Open Science, 2020, 7, 191722.	2.4	18
33	Female choice for male cuticular hydrocarbon profile in decorated crickets is not based on similarity to their own profile. Journal of Evolutionary Biology, 2015, 28, 2175-2186.	1.7	17
34	Sociality and communicative complexity: insights from the other insect societies. Current Opinion in Insect Science, 2018, 28, 19-25.	4.4	17
35	Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles (Coleoptera: Silphidae): A large scale carrion study. PLoS ONE, 2018, 13, e0196839.	2.5	17
36	The Attraction of the Dung Beetle Anoplotrupes stercorosus (Coleoptera: Geotrupidae) to Volatiles from Vertebrate Cadavers. Insects, 2020, 11, 476.	2.2	17

SANDRA STEIGER

#	Article	IF	CITATIONS
37	Multivariate sexual selection on male song structure in wild populations of sagebrush crickets, <i>Cyphoderris strepitans</i> (Orthoptera: Haglidae). Ecology and Evolution, 2013, 3, 3590-3603.	1.9	16
38	Self-recognition in crickets via on-line processing. Current Biology, 2014, 24, R1117-R1118.	3.9	15
39	Social environment determines degree of chemical signalling. Biology Letters, 2011, 7, 822-824.	2.3	14
40	Offspring dependence on parental care and the role of parental transfer of oral fluids in burying beetles. Frontiers in Zoology, 2018, 15, 33.	2.0	14
41	When males stop having sex: adaptive insect mating tactics during parental care. Animal Behaviour, 2014, 90, 245-253.	1.9	13
42	Dynamic changes in volatile emissions of breeding burying beetles. Physiological Entomology, 2014, 39, 153-164.	1.5	13
43	Pheromones involved in insect parental care and family life. Current Opinion in Insect Science, 2017, 24, 89-95.	4.4	13
44	Finding a fresh carcass: bacterially derived volatiles and burying beetle search success. Chemoecology, 2020, 30, 287-296.	1.1	13
45	Manipulation of parental nutritional condition reveals competition among family members. Journal of Evolutionary Biology, 2018, 31, 822-832.	1.7	12
46	Burying Beetle Parents Adaptively Manipulate Information Broadcast from a Microbial Community. American Naturalist, 2021, 197, 366-378.	2.1	12
47	New Synthesis – Visual and Chemical Ornaments: What Researchers of Different Signal Modalities Can Learn from Each Other. Journal of Chemical Ecology, 2012, 38, 1-1.	1.8	10
48	Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments. Die Naturwissenschaften, 2017, 104, 53.	1.6	10
49	Pheromones Regulating Reproduction in Subsocial Beetles: Insights with References to Eusocial Insects. Journal of Chemical Ecology, 2018, 44, 785-795.	1.8	10
50	A Parental Volatile Pheromone Triggers Offspring Begging in a Burying Beetle. IScience, 2019, 19, 1260-1278.	4.1	8
51	Size Exclusion High Performance Liquid Chromatography: Re-Discovery of a Rapid and Versatile Method for Clean-Up and Fractionation in Chemical Ecology. Journal of Chemical Ecology, 2015, 41, 574-583.	1.8	7
52	Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae) Communities in German Forests. Insects, 2020, 11, 828.	2.2	7
53	Contribution of males to brood care can compensate for their food consumption from a shared resource. Ecology and Evolution, 2020, 10, 3535-3543.	1.9	7
54	Temporal variability of the rove beetle (Coleoptera: Staphylinidae) community on small vertebrate carrion and its potential use for forensic entomology. Forensic Science International, 2021, 323, 110792.	2.2	7

SANDRA STEIGER

#	Article	IF	CITATIONS
55	Fitness costs associated with chemical signaling. Communicative and Integrative Biology, 2012, 5, 57-60.	1.4	5
56	Recognition and Family Life: Recognition Mechanisms in the Biparental Burying Beetle. , 2015, , 249-266.		5
57	Access to a carcass, but not mating opportunities, influences paternal care in burying beetles. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	5
58	Males benefit personally from family life: evidence from a wild burying beetle population. Behavioral Ecology, 2021, 32, 912-918.	2.2	5
59	Differences in sibling cooperation in presence and absence of parental care in a genus with interspecific variation in offspring dependence. Evolution; International Journal of Organic Evolution, 2021, , .	2.3	4
60	Why are males more attractive after brood care? Proximate causes of enhanced sex pheromone emission in a burying beetle. Physiological Entomology, 2018, 43, 120-128.	1.5	3
61	Divergent coevolutionary trajectories in parent–offspring interactions and discrimination against brood parasites revealed by interspecific cross-fostering. Royal Society Open Science, 2018, 5, 180189.	2.4	3
62	Editorial overview: Beyond eusocial insects: studying the other social insects to better understand social evolution. Current Opinion in Insect Science, 2018, 28, vi-viii.	4.4	2
63	Parent–offspring conflict and its outcome under uni-and biparental care. Scientific Reports, 2022, 12, 1999.	3.3	2
64	A pheromone that coordinates parental care is evolutionary conserved among burying beetles (Silphidae: Nicrophorus). Chemoecology, 2019, 29, 1-9.	1.1	1
65	The Impact of Environmental Factors on the Efficacy of Chemical Communication in the Burying Beetle (Coleoptera: Silphidae). Journal of Insect Science, 2020, 20, .	1.5	0
66	Sexual Selection of Male Song in Free-Living Sagebrush Crickets, Cyphoderris Strepitans. Annual Report, 0, 33, 125-130.	0.0	0