George E Karniadakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043676/publications.pdf

Version: 2024-02-01

448 papers 42,327 citations

101 h-index 185 g-index

458 all docs

458 docs citations

458 times ranked

17356 citing authors

#	Article	IF	CITATIONS
1	DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal Graphs. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 985-998.	7.2	5
2	Learning Poisson Systems and Trajectories of Autonomous Systems via Poisson Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 8271-8283.	7.2	9
3	Potential Flow Generator With <i>L</i> ₂ Optimal Transport Regularity for Generative Models. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 528-538.	7.2	11
4	Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions. Neurocomputing, 2022, 468, 165-180.	3 . 5	74
5	Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture. Energy Conversion and Management, 2022, 252, 115063.	4.4	19
6	Computational investigation of blood cell transport in retinal microaneurysms. PLoS Computational Biology, 2022, 18, e1009728.	1.5	13
7	Generative Ensemble Regression: Learning Particle Dynamics from Observations of Ensembles with Physics-informed Deep Generative Models. SIAM Journal of Scientific Computing, 2022, 44, B80-B99.	1.3	8
8	A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114587.	3.4	100
9	Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator–regression neural network. Journal of the Royal Society Interface, 2022, 19, 20210670.	1.5	21
10	Error estimates for DeepONets: a deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 2022, 6, .	1.6	32
11	Analyses of internal structures and defects in materials using physics-informed neural networks. Science Advances, 2022, 8, eabk0644.	4.7	80
12	Deep learning of inverse water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations. Ocean Engineering, 2022, 248, 110775.	1.9	37
13	Multiphysics and multiscale modeling of microthrombosis in COVID-19. PLoS Computational Biology, 2022, 18, e1009892.	1.5	15
14	Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114823.	3.4	148
15	A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114778.	3.4	92
16	Learning functional priors and posteriors from data and physics. Journal of Computational Physics, 2022, 457, 111073.	1.9	23
17	Meta-learning PINN loss functions. Journal of Computational Physics, 2022, 458, 111121.	1.9	32
18	Physicsâ€Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	84

#	Article	IF	CITATIONS
19	Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. Fractional Calculus and Applied Analysis, 2022, 25, 453-487.	1.2	12
20	Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems. Computer Methods in Applied Mechanics and Engineering, 2022, 402, 115027.	3.4	38
21	Theory and simulation of electrokinetic fluctuations in electrolyte solutions at the mesoscale. Journal of Fluid Mechanics, 2022, 942, .	1.4	3
22	Approximation rates of DeepONets for learning operators arising from advection–diffusion equations. Neural Networks, 2022, 153, 411-426.	3.3	15
23	GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	18
24	Physics-informed neural networks for inverse problems in supersonic flows. Journal of Computational Physics, 2022, 466, 111402.	1.9	73
25	Scalable algorithms for physics-informed neural and graph networks. Data-Centric Engineering, 2022, 3, .	1.2	13
26	Bayesian Physics Informed Neural Networks for real-world nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering, 2022, 402, 115346.	3.4	37
27	Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements. European Journal of Applied Mathematics, 2021, 32, 397-420.	1.4	22
28	Multiscale Modeling Meets Machine Learning: What Can We Learn?. Archives of Computational Methods in Engineering, 2021, 28, 1017-1037.	6.0	164
29	B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 2021, 425, 109913.	1.9	350
30	hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113547.	3.4	220
31	Active- and transfer-learning applied to microscale-macroscale coupling to simulate viscoelastic flows. Journal of Computational Physics, 2021, 427, 110069.	1.9	21
32	An open-source parallel code for computing the spectral fractional Laplacian on 3D complex geometry domains. Computer Physics Communications, 2021, 261, 107695.	3.0	2
33	NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics, 2021, 426, 109951.	1.9	386
34	Learning functionals via LSTM neural networks for predicting vessel dynamics in extreme sea states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20190897.	1.0	17
35	Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. Journal of the Royal Society Interface, 2021, 18, 20200834.	1.5	44
36	A large-eddy simulation study on the similarity between free vibrations of a flexible cylinder and forced vibrations of a rigid cylinder. Journal of Fluids and Structures, 2021, 101, 103223.	1.5	21

#	Article	IF	Citations
37	Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (MFNN) framework. Journal of Rheology, 2021, 65, 179-198.	1.3	45
38	Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 2021, 3, 218-229.	8.3	589
39	Operator learning for predicting multiscale bubble growth dynamics. Journal of Chemical Physics, 2021, 154, 104118.	1.2	71
40	Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows. Journal of Fluid Mechanics, 2021, 914, .	1.4	28
41	Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. Journal of Fluid Mechanics, 2021, 915, .	1.4	129
42	Non-invasive inference of thrombus material properties with physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113603.	3.4	82
43	Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2021 , 118 , .	3.3	50
44	Physics-Informed Neural Networks for Heat Transfer Problems. Journal of Heat Transfer, 2021, 143, .	1.2	304
45	Physics-informed machine learning. Nature Reviews Physics, 2021, 3, 422-440.	11.9	1,789
46	A phase-field method for boiling heat transfer. Journal of Computational Physics, 2021, 435, 110239.	1.9	16
47	Variable-Order Fractional Models for Wall-Bounded Turbulent Flows. Entropy, 2021, 23, 782.	1.1	3
48	In silico biophysics and hemorheology of blood hyperviscosity syndrome. Biophysical Journal, 2021, 120, 2723-2733.	0.2	13
49	Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients. Npj Digital Medicine, 2021, 4, 109.	5.7	48
50	DeepM& Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks. Journal of Computational Physics, 2021, 436, 110296.	1.9	92
51	From Data to Assessment Models, Demonstrated through a Digital Twin of Marine Risers. , 2021, , .		2
52	Multi-fidelity Bayesian neural networks: Algorithms and applications. Journal of Computational Physics, 2021, 438, 110361.	1.9	67
53	Multiscale parareal algorithm for long-time mesoscopic simulations of microvascular blood flow in zebrafish. Computational Mechanics, 2021, 68, 1131-1152.	2.2	8
54	An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City. PLoS Computational Biology, 2021, 17, e1009334.	1.5	19

#	Article	IF	CITATIONS
55	Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation. Journal of Computational Physics, 2021, 447, 110676.	1.9	72
56	Parallel physics-informed neural networks via domain decomposition. Journal of Computational Physics, 2021, 447, 110683.	1.9	120
57	DeepM& Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. Journal of Computational Physics, 2021, 447, 110698.	1.9	55
58	Solving Inverse Stochastic Problems from Discrete Particle Observations Using the FokkerPlanck Equation and Physics-Informed Neural Networks. SIAM Journal of Scientific Computing, 2021, 43, B811-B830.	1.3	45
59	DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Review, 2021, 63, 208-228.	4.2	677
60	Computational modeling of biomechanics andÂbiorheology of heated red blood cells. Biophysical Journal, 2021, 120, 4663-4671.	0.2	12
61	A seamless multiscale operator neural network for inferring bubble dynamics. Journal of Fluid Mechanics, 2021, 929, .	1.4	32
62	A fast multi-fidelity method with uncertainty quantification for complex data correlations: Application to vortex-induced vibrations of marine risers. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114212.	3.4	12
63	How the spleen reshapes and retains young and old red blood cells: A computational investigation. PLoS Computational Biology, 2021, 17, e1009516.	1.5	22
64	Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks. Nature Computational Science, 2021, 1, 744-753.	3.8	36
65	Towards a Unified theory of Fractional and Nonlocal Vector Calculus. Fractional Calculus and Applied Analysis, 2021, 24, 1301-1355.	1.2	22
66	nn-PINNs: Non-Newtonian physics-informed neural networks for complex fluid modeling. Soft Matter, 2021, 18, 172-185.	1.2	33
67	Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1727-1738.	1.5	308
68	A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. Journal of Computational Physics, 2020, 401, 109020.	1.9	270
69	What is the fractional Laplacian? A comparative review with new results. Journal of Computational Physics, 2020, 404, 109009.	1.9	208
70	Physics-informed neural networks for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112789.	3.4	464
71	A Multifidelity Framework and Uncertainty Quantification for Sea Surface Temperature in the Massachusetts and Cape Cod Bays. Earth and Space Science, 2020, 7, e2019EA000954.	1.1	9
72	Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. Journal of Computational Physics, 2020, 404, 109136.	1.9	373

#	Article	IF	CITATIONS
73	A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations. Journal of Computational Physics, 2020, 405, 109141.	1.9	38
74	SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural Networks, 2020, 132, 166-179.	3.3	68
75	Quantifying Fibrinogen-Dependent Aggregation of Red Blood Cells in Type 2 Diabetes Mellitus. Biophysical Journal, 2020, 119, 900-912.	0.2	31
76	Reinforcement learning for bluff body active flow control in experiments and simulations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26091-26098.	3.3	114
77	PPINN: Parareal physics-informed neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and Engineering, 2020, 370, 113250.	3.4	231
78	Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200334.	1.0	119
79	Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks. Journal of Nondestructive Evaluation, 2020, 39, 1.	1.1	113
80	Predictive modelling of thrombus formation in diabetic retinal microaneurysms. Royal Society Open Science, 2020, 7, 201102.	1.1	19
81	A fast solver for spectral elements applied to fractional differential equations using hierarchical matrix approximation. Computer Methods in Applied Mechanics and Engineering, 2020, 366, 113053.	3.4	9
82	Physics-informed semantic inpainting: Application to geostatistical modeling. Journal of Computational Physics, 2020, 419, 109676.	1.9	32
83	Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks. SIAM Journal of Scientific Computing, 2020, 42, A639-A665.	1.3	129
84	Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness. Neural Networks, 2020, 130, 85-99.	3.3	23
85	Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations. SIAM Journal of Scientific Computing, 2020, 42, A292-A317.	1.3	168
86	Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science, 2020, 367, 1026-1030.	6.0	846
87	A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Computational Biology, 2020, 16, e1007709.	1.5	51
88	Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7052-7062.	3.3	178
89	Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Soft Matter, 2020, 16, 4756-4766.	1.2	14
90	Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineering, 2020, 365, 113028.	3.4	362

#	Article	IF	CITATIONS
91	Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks. Advances in Dynamics, Patterns, Cognition, 2020, , 323-343.	0.2	15
92	Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics Express, 2020, 28, 11618.	1.7	257
93	Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Computational Biology, 2020, 16, e1007575.	1.5	133
94	Multiscale Modeling of Diseases: Overview. , 2020, , 2541-2550.		0
95	Title is missing!. , 2020, 16, e1007709.		0
96	Title is missing!. , 2020, 16, e1007709.		0
97	Title is missing!. , 2020, 16, e1007709.		0
98	Title is missing!. , 2020, 16, e1007709.		0
99	Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies. Science Advances, 2019, 5, eaax3905.	4.7	18
100	Machine Learning of Space-Fractional Differential Equations. SIAM Journal of Scientific Computing, 2019, 41, A2485-A2509.	1.3	32
101	Efficient Multistep Methods for Tempered Fractional Calculus: Algorithms and Simulations. SIAM Journal of Scientific Computing, 2019, 41, A2510-A2535.	1.3	36
102	A stabilized phase-field method for two-phase flow at high Reynolds number and large density/viscosity ratio. Journal of Computational Physics, 2019, 397, 108832.	1.9	11
103	Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. Journal of Computational Physics, 2019, 397, 108850.	1.9	212
104	Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow. Journal of Fluid Mechanics, 2019, 881, 815-858.	1.4	49
105	Nonlocal Flocking Dynamics: Learning the Fractional Order of PDEs from Particle Simulations. Communications on Applied Mathematics and Computation, 2019, 1, 597-619.	0.7	15
106	fPINNs: Fractional Physics-Informed Neural Networks. SIAM Journal of Scientific Computing, 2019, 41, A2603-A2626.	1.3	365
107	Density-dependent finite system-size effects in equilibrium molecular dynamics estimation of shear viscosity: Hydrodynamic and configurational study. Journal of Chemical Physics, 2019, 151, 104101.	1.2	10
108	Fractional Gray–Scott model: Well-posedness, discretization, and simulations. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 1030-1049.	3.4	28

#	Article	IF	Citations
109	Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces. Soft Matter, 2019, 15, 1747-1757.	1.2	17
110	A computational mechanics special issue on: data-driven modeling and simulation—theory, methods, and applications. Computational Mechanics, 2019, 64, 275-277.	2.2	20
111	A Spectral Penalty Method for Two-Sided Fractional Differential Equations with General Boundary Conditions. SIAM Journal of Scientific Computing, 2019, 41, A1840-A1866.	1.3	5
112	One-dimensional modeling of fractional flow reserve in coronary artery disease: Uncertainty quantification and Bayesian optimization. Computer Methods in Applied Mechanics and Engineering, 2019, 353, 66-85.	3.4	28
113	Parametric Gaussian process regression for big data. Computational Mechanics, 2019, 64, 409-416.	2.2	22
114	Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics. Journal of Computational Physics, 2019, 393, 214-228.	1.9	8
115	Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data fusion. Interface Focus, 2019, 9, 20180083.	1.5	23
116	Neural-net-induced Gaussian process regression for function approximation and PDE solution. Journal of Computational Physics, 2019, 384, 270-288.	1.9	39
117	Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Computer Methods in Applied Mechanics and Engineering, 2019, 348, 377-395.	3.4	21
118	Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network Fractional Calculus and Applied Analysis, 2019, 22, 1675-1688.	1.2	23
119	A robotic Intelligent Towing Tank for learning complex fluid-structure dynamics. Science Robotics, 2019, 4, .	9.9	43
120	Integrating machine learning and multiscale modelingâ€"perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj Digital Medicine, 2019, 2, 115.	5.7	319
121	Deep learning of vortex-induced vibrations. Journal of Fluid Mechanics, 2019, 861, 119-137.	1.4	256
122	Fractional magneto-hydrodynamics: Algorithms and applications. Journal of Computational Physics, 2019, 378, 44-62.	1.9	8
123	An entropy-viscosity large eddy simulation study of turbulent flow in a flexible pipe. Journal of Fluid Mechanics, 2019, 859, 691-730.	1.4	13
124	Quantifying Shear-Induced Deformation and Detachment of Individual Adherent Sickle Red BloodÂCells. Biophysical Journal, 2019, 116, 360-371.	0.2	29
125	Turbulence in a Localized Puff in a Pipe. Flow, Turbulence and Combustion, 2019, 103, 1-24.	1.4	4
126	Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Langmuir, 2019, 35, 2431-2442.	1.6	87

#	Article	IF	CITATIONS
127	Data-driven Modeling of Hemodynamics and its Role on Thrombus Size and Shape in Aortic Dissections. Scientific Reports, 2018, 8, 2515.	1.6	23
128	Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations. SIAM Journal of Scientific Computing, 2018, 40, A172-A198.	1.3	162
129	An atomistic fingerprint algorithm for learning <i>ab initio</i> molecular force fields. Journal of Chemical Physics, 2018, 148, 034101.	1.2	23
130	Preface: theory, methods, and applications of mesoscopic modeling. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1-2.	1.9	7
131	Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics, 2018, 357, 125-141.	1.9	739
132	Molecular hydrodynamics: Vortex formation and sound wave propagation. Journal of Chemical Physics, 2018, 148, 024506.	1.2	9
133	A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative. SIAM Journal on Numerical Analysis, 2018, 56, 24-49.	1.1	69
134	Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes. Biophysical Journal, 2018, 114, 2014-2023.	0.2	46
135	Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows. Journal of Computational Physics, 2018, 363, 116-127.	1.9	38
136	A Computational Stochastic Methodology for the Design of Random Meta-materials under Geometric Constraints. SIAM Journal of Scientific Computing, 2018, 40, B353-B378.	1.3	9
137	A dissipative particle dynamics method for arbitrarily complex geometries. Journal of Computational Physics, 2018, 355, 534-547.	1.9	60
138	Multiscale Modeling of Diseases: Overview. , 2018, , 1-10.		0
139	A Riesz Basis Galerkin Method for the Tempered Fractional Laplacian. SIAM Journal on Numerical Analysis, 2018, 56, 3010-3039.	1.1	28
140	A New Class of Semi-Implicit Methods with Linear Complexity for Nonlinear Fractional Differential Equations. SIAM Journal of Scientific Computing, 2018, 40, A2986-A3011.	1.3	18
141	Quantifying Platelet Margination in Diabetic BloodÂFlow. Biophysical Journal, 2018, 115, 1371-1382.	0.2	51
142	Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9574-9579.	3.3	93
143	Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9473-9478.	3.3	55
144	A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 905-931.	3.4	37

#	Article	lF	Citations
145	Moving toward realistic models. Physics of Life Reviews, 2018, 26-27, 96-99.	1.5	2
146	Nature of intrinsic uncertainties in equilibrium molecular dynamics estimation of shear viscosity for simple and complex fluids. Journal of Chemical Physics, 2018, 149, 044510.	1.2	30
147	Bi-directional coupling between a PDE-domain and an adjacent Data-domain equipped with multi-fidelity sensors. Journal of Computational Physics, 2018, 374, 121-134.	1.9	1
148	A spectral-element/Fourier smoothed profile method for large-eddy simulations of complex VIV problems. Computers and Fluids, 2018, 172, 84-96.	1.3	14
149	Stochastic Domain Decomposition via Moment Minimization. SIAM Journal of Scientific Computing, 2018, 40, A2152-A2173.	1.3	6
150	A probabilistic framework for multidisciplinary design: Application to the hydrostructural optimization of supercavitating hydrofoils. International Journal for Numerical Methods in Engineering, 2018, 116, 246-269.	1.5	7
151	Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. Journal of Physical Chemistry B, 2018, 122, 11302-11310.	1.2	6
152	Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism: Clinical and Experimental, 2018, 87, A1-A9.	1.5	83
153	Improving SWATH Seakeeping Performance using Multi-Fidelity Gaussian Process and Bayesian Optimization. Journal of Ship Research, 2018, 62, 223-240.	0.5	22
154	A tunable finite difference method for fractional differential equations with non-smooth solutions. Computer Methods in Applied Mechanics and Engineering, 2017, 318, 193-214.	3.4	29
155	Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Application to polymer melts. Journal of Chemical Physics, 2017, 146, 014104.	1.2	73
156	Anisotropic single-particle dissipative particle dynamics model. Journal of Computational Physics, 2017, 336, 481-491.	1.9	5
157	A Generalized Spectral Collocation Method with Tunable Accuracy for Fractional Differential Equations with End-Point Singularities. SIAM Journal of Scientific Computing, 2017, 39, A360-A383.	1.3	56
158	Fractional Burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous Galerkin methods. Journal of Computational Physics, 2017, 336, 143-163.	1.9	18
159	Inferring solutions of differential equations using noisy multi-fidelity data. Journal of Computational Physics, 2017, 335, 736-746.	1.9	202
160	Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160751.	1.0	175
161	Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. Journal of Biomechanical Engineering, 2017, 139, .	0.6	46
162	Fractional spectral vanishing viscosity method: Application to the quasi-geostrophic equation. Chaos, Solitons and Fractals, 2017, 102, 327-332.	2.5	5

#	Article	IF	CITATIONS
163	A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems. Journal of Computational Physics, 2017, 344, 303-319.	1.9	23
164	GPU-accelerated red blood cells simulations with transport dissipative particle dynamics. Computer Physics Communications, 2017, 217, 171-179.	3.0	43
165	A resilient and efficient CFD framework: Statistical learning tools for multi-fidelity and heterogeneous information fusion. Journal of Computational Physics, 2017, 344, 516-533.	1.9	8
166	A Petrov–Galerkin spectral element method for fractional elliptic problems. Computer Methods in Applied Mechanics and Engineering, 2017, 324, 512-536.	3.4	37
167	A Petrov-Galerkin Spectral Method of Linear Complexity for Fractional Multiterm ODEs on the Half Line. SIAM Journal of Scientific Computing, 2017, 39, A922-A946.	1.3	24
168	OpenRBC: A Fast Simulator of Red Blood Cells atÂProtein Resolution. Biophysical Journal, 2017, 112, 2030-2037.	0.2	47
169	Petrov–Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations. SIAM Journal of Scientific Computing, 2017, 39, A1003-A1037.	1.3	60
170	Efficient two-dimensional simulations of the fractional Szabo equation with different time-stepping schemes. Computers and Mathematics With Applications, 2017, 73, 1286-1297.	1.4	3
171	Systematic parameter inference in stochastic mesoscopic modeling. Journal of Computational Physics, 2017, 330, 571-593.	1.9	18
172	Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions. Computer Methods in Applied Mechanics and Engineering, 2017, 327, 478-502.	3.4	97
173	Direct numerical simulations of two-phase flow in an inclined pipe. Journal of Fluid Mechanics, 2017, 825, 189-207.	1.4	18
174	Computing Fractional Laplacians on Complex-Geometry Domains: Algorithms and Simulations. SIAM Journal of Scientific Computing, 2017, 39, A1320-A1344.	1.3	41
175	Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus. Biophysical Journal, 2017, 113, 481-490.	0.2	54
176	Machine learning of linear differential equations using Gaussian processes. Journal of Computational Physics, 2017, 348, 683-693.	1.9	343
177	Discovering variable fractional orders of advection–dispersion equations from field data using multi-fidelity Bayesian optimization. Journal of Computational Physics, 2017, 348, 694-714.	1.9	44
178	A general CFD framework for fault-resilient simulations based on multi-resolution information fusion. Journal of Computational Physics, 2017, 347, 290-304.	1.9	9
179	Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers. Biophysical Journal, 2017, 113, 48-59.	0.2	16
180	Adaptive finite element method for fractional differential equations using hierarchical matrices. Computer Methods in Applied Mechanics and Engineering, 2017, 325, 56-76.	3.4	54

#	Article	IF	CITATIONS
181	Biomechanics and biorheology of red blood cells in sickle cell anemia. Journal of Biomechanics, 2017, 50, 34-41.	0.9	87
182	Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach. Biomechanics and Modeling in Mechanobiology, 2017, 16, 249-261.	1.4	35
183	Construction of non-Markovian coarse-grained models employing the Mori–Zwanzig formalism and iterative Boltzmann inversion. Journal of Chemical Physics, 2017, 147, 244110.	1.2	21
184	A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Computational Biology, 2017, 13, e1005746.	1.5	154
185	Patient-specific modeling of individual sickle cell behavior under transient hypoxia. PLoS Computational Biology, 2017, 13, e1005426.	1.5	24
186	A General Shear-Dependent Model for Thrombus Formation. PLoS Computational Biology, 2017, 13, e1005291.	1.5	104
187	Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data sets. SIAM Journal of Scientific Computing, 2016, 38, B521-B538.	1.3	91
188	111 years of Brownian motion. Soft Matter, 2016, 12, 6331-6346.	1.2	129
189	Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations. Journal of Fluid Mechanics, 2016, 809, 895-917.	1.4	34
190	The flow dynamics of the garden-hoseÂinstability. Journal of Fluid Mechanics, 2016, 800, 595-612.	1.4	10
191	cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. Journal of Chemical Physics, 2016, 145, 144109.	1.2	20
192	Multiscale modeling and simulation of brain blood flow. Physics of Fluids, 2016, 28, 021304.	1.6	44
193	A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. Journal of Chemical Physics, 2016, 145, 044102.	1.2	42
194	Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations. Biophysical Journal, 2016, 110, 2085-2093.	0.2	22
195	Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond. Journal of the Royal Society Interface, 2016, 13, 20151107.	1.5	67
196	Non-Equilibrium Dynamics of Vesicles and Micelles by Self-Assembly of Block Copolymers with Double Thermoresponsivity. Macromolecules, 2016, 49, 2895-2903.	2.2	31
197	Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction. Soft Matter, 2016, 12, 4339-4351.	1.2	58
198	Implicit-Explicit Difference Schemes for Nonlinear Fractional Differential Equations with Nonsmooth Solutions. SIAM Journal of Scientific Computing, 2016, 38, A3070-A3093.	1.3	63

#	Article	IF	Citations
199	Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. Journal of Computational Physics, 2016, 323, 219-242.	1.9	66
200	Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow. Physical Review E, 2016, 93, 033312.	0.8	15
201	Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7804-7809.	3.3	193
202	A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall. Journal of the Royal Society Interface, 2016, 13, 20150964.	1.5	11
203	Flow in complex domains simulated by Dissipative Particle Dynamics driven by geometry-specific body-forces. Journal of Computational Physics, 2016, 305, 906-920.	1.9	14
204	Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. Journal of Computational Physics, 2016, 307, 15-33.	1.9	58
205	A fractional phase-field model for two-phase flows with tunable sharpness: Algorithms and simulations. Computer Methods in Applied Mechanics and Engineering, 2016, 305, 376-404.	3.4	74
206	Patient-specific blood rheology in sickle-cell anaemia. Interface Focus, 2016, 6, 20150065.	1.5	47
207	Visualizing multiphysics, fluid-structure interaction phenomena in intracranial aneurysms. Parallel Computing, 2016, 55, 9-16.	1.3	7
208	Strong and weak convergence order of finite element methods for stochastic PDEs with spatial white noise. Numerische Mathematik, 2016, 134, 61-89.	0.9	14
209	Dynamic and rheological properties of soft biological cell suspensions. Rheologica Acta, 2016, 55, 433-449.	1.1	22
210	MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease. PLoS Computational Biology, 2016, 12, e1005173.	1.5	51
211	U-shaped fairings suppress vortex-induced vibrations for cylinders in cross-flow. Journal of Fluid Mechanics, 2015, 782, 300-332.	1.4	25
212	Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium. Physical Review E, 2015, 92, 053302.	0.8	21
213	Algorithms for Propagating Uncertainty Across Heterogeneous Domains. SIAM Journal of Scientific Computing, 2015, 37, A3030-A3054.	1.3	6
214	Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. Journal of Chemical Physics, 2015, 143, 243128.	1.2	107
215	Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees. PLoS Computational Biology, 2015, 11, e1004410.	1.5	51
216	Effects of thermal noise on the transitional dynamics of an inextensible elastic filament in stagnation flow. Soft Matter, 2015, 11, 4962-4972.	1.2	7

#	Article	IF	CITATIONS
217	Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics, 2015, 297, 13-31.	1.9	65
218	A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations. SIAM Journal of Scientific Computing, 2015, 37, A2710-A2732.	1.3	110
219	Adaptive WickMalliavin Approximation to Nonlinear SPDEs with Discrete Random Variables. SIAM Journal of Scientific Computing, 2015, 37, A1872-A1890.	1.3	3
220	Adaptive multi-element polynomial chaos with discrete measure: Algorithms and application to SPDEs. Applied Numerical Mathematics, 2015, 90, 91-110.	1.2	18
221	Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. Journal of Computational Physics, 2015, 293, 312-338.	1.9	152
222	Brownian Motion of a Rayleigh Particle Confined in a Channel: A Generalized Langevin Equation Approach. Journal of Statistical Physics, 2015, 158, 1100-1125.	0.5	5
223	Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150018.	1.0	105
224	Tempered Fractional Sturm-Liouville EigenProblems. SIAM Journal of Scientific Computing, 2015, 37, A1777-A1800.	1.3	65
225	Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 63-76.	1.9	75
226	Time-Splitting Schemes for Fractional Differential Equations I: Smooth Solutions. SIAM Journal of Scientific Computing, 2015, 37, A1752-A1776.	1.3	23
227	Numerical Methods for Stochastic Delay Differential Equations Via the Wong-Zakai Approximation. SIAM Journal of Scientific Computing, 2015, 37, A295-A318.	1.3	27
228	Numerical Methods for SPDEs with Tempered Stable Processes. SIAM Journal of Scientific Computing, 2015, 37, A1197-A1217.	1.3	7
229	Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition. Journal of Computational Physics, 2015, 297, 132-155.	1.9	31
230	Suppression of vortex-induced vibrations by fairings: A numerical study. Journal of Fluids and Structures, 2015, 54, 679-700.	1.5	40
231	Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise. SIAM Journal on Numerical Analysis, 2015, 53, 153-183.	1.1	8
232	Quantification of sampling uncertainty for molecular dynamics simulation: Time-dependent diffusion coefficient in simple fluids. Journal of Computational Physics, 2015, 302, 485-508.	1.9	29
233	Optimal Error Estimates of Spectral Petrov-Galerkin and Collocation Methods for Initial Value Problems of Fractional Differential Equations. SIAM Journal on Numerical Analysis, 2015, 53, 2074-2096.	1.1	38
234	Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. Journal of Chemical Physics, 2015, 143, 014101.	1.2	41

#	Article	IF	Citations
235	An Effective Fractal-Tree Closure Model for Simulating Blood Flow in Large Arterial Networks. Annals of Biomedical Engineering, 2015, 43, 1432-1442.	1.3	46
236	Stochastic simulations of ocean waves: An uncertainty quantification study. Ocean Modelling, 2015, 86, 15-35.	1.0	13
237	A unified Petrov–Galerkin spectral method for fractional PDEs. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 1545-1569.	3.4	87
238	Second-order approximations for variable order fractional derivatives: Algorithms and applications. Journal of Computational Physics, 2015, 293, 184-200.	1.9	156
239	On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60Ű. Journal of Fluids and Structures, 2015, 53, 58-69.	1.5	33
240	A Recursive Sparse Grid Collocation Method for Differential Equations with White Noise. SIAM Journal of Scientific Computing, 2014, 36, A1652-A1677.	1.3	7
241	Electrostatic correlations near charged planar surfaces. Journal of Chemical Physics, 2014, 141, 094703.	1.2	3
242	Time Correlation Functions of Brownian Motion and Evaluation of Friction Coefficient in the Near-Brownian-Limit Regime. Multiscale Modeling and Simulation, 2014, 12, 225-248.	0.6	2
243	Stochastic testing simulator for integrated circuits and MEMS: Hierarchical and sparse techniques. , 2014, , .		19
244	Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models. Annals of Biomedical Engineering, 2014, 42, 1012-1023.	1.3	99
245	On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations. Journal of Computational Physics, 2014, 270, 1-20.	1.9	25
246	Exponentially accurate spectral and spectral element methods for fractional ODEs. Journal of Computational Physics, 2014, 257, 460-480.	1.9	139
247	Computational Biorheology of Human Blood Flow in Health and Disease. Annals of Biomedical Engineering, 2014, 42, 368-387.	1.3	73
248	Spectral and Discontinuous Spectral Element Methods for Fractional Delay Equations. SIAM Journal of Scientific Computing, 2014, 36, B904-B929.	1.3	50
249	Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations. SIAM Journal of Scientific Computing, 2014, 36, B684-B707.	1.3	84
250	Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation. Soft Matter, 2014, 10, 8659-8672.	1.2	99
251	Statistical analysis and simulation of random shocks in stochastic Burgers equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140080.	1.0	9
252	Fractional Spectral Collocation Method. SIAM Journal of Scientific Computing, 2014, 36, A40-A62.	1.3	198

#	Article	IF	Citations
253	Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130389.	1.6	68
254	A semiâ€local spectral/hp element solver for linear elasticity problems. International Journal for Numerical Methods in Engineering, 2014, 100, 347-373.	1.5	4
255	Energy-conserving dissipative particle dynamics with temperature-dependent properties. Journal of Computational Physics, 2014, 265, 113-127.	1.9	76
256	Coarse-Grained Modeling of Protein Unfolding Dynamics. Multiscale Modeling and Simulation, 2014, 12, 109-118.	0.6	2
257	Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications. Computer Physics Communications, 2014, 185, 2809-2822.	3.0	40
258	Fractional Sturm–Liouville eigen-problems: Theory and numerical approximation. Journal of Computational Physics, 2013, 252, 495-517.	1.9	213
259	Stochastic smoothed profile method for modeling random roughness in flow problems. Computer Methods in Applied Mechanics and Engineering, 2013, 263, 99-112.	3.4	11
260	Adaptive Discontinuous Galerkin Method for Response-Excitation PDF Equations. SIAM Journal of Scientific Computing, 2013, 35, B890-B911.	1.3	19
261	Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter, 2013, 9, 28-37.	1.2	122
262	Optimization of a z-source DC circuit breaker. , 2013, , .		25
263	Numerical solution of the Stratonovich- and Ito–Euler equations: Application to the stochastic piston problem. Journal of Computational Physics, 2013, 236, 15-27.	1.9	6
264	Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows. Journal of Fluids and Structures, 2013, 41, 33-42.	1.5	42
265	Potassium Buffering in the Neurovascular Unit: Models and Sensitivity Analysis. Biophysical Journal, 2013, 105, 2046-2054.	0.2	50
266	Blood flow in small tubes: quantifying the transition to the non-continuum regime. Journal of Fluid Mechanics, 2013, 722, 214-239.	1.4	76
267	Integrated simulation framework for crash back operation. , 2013, , .		0
268	Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of Fluid Mechanics, 2013, 717, 361-375.	1.4	57
269	Parallel multiscale simulations of a brain aneurysm. Journal of Computational Physics, 2013, 244, 131-147.	1.9	28
270	Reweighted minimization method for stochastic elliptic differential equations. Journal of Computational Physics, 2013, 248, 87-108.	1.9	87

#	Article	IF	Citations
271	Phasing mechanisms between the in-line and cross-flow vortex-induced vibrations of a long tensioned beam in shear flow. Computers and Structures, 2013, 122, 155-163.	2.4	32
272	Generalized fictitious methods for fluid–structure interactions: Analysis and simulations. Journal of Computational Physics, 2013, 245, 317-346.	1.9	50
273	A convergence study for SPDEs using combined Polynomial Chaos and Dynamically-Orthogonal schemes. Journal of Computational Physics, 2013, 245, 281-301.	1.9	16
274	Wick–Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130001.	1.0	13
275	Lipid bilayer and cytoskeletal interactions in a red blood cell. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13356-13361.	3.3	155
276	Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11326-11330.	3.3	68
277	A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 759-783.	1.0	53
278	Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres. Journal of Fluid Mechanics, 2012, 711, 192-211.	1.4	58
279	A Multistage Wiener Chaos Expansion Method for Stochastic Advection-Diffusion-Reaction Equations. SIAM Journal of Scientific Computing, 2012, 34, A914-A936.	1.3	12
280	Error Estimates for the ANOVA Method with Polynomial Chaos Interpolation: Tensor Product Functions. SIAM Journal of Scientific Computing, 2012, 34, A1165-A1186.	1.3	25
281	A bidirectional model for communication in the neurovascular unit. Journal of Theoretical Biology, 2012, 311, 80-93.	0.8	29
282	Quantifying the Rheological and Hemodynamic Characteristics of Sickle Cell Anemia. Biophysical Journal, 2012, 102, 185-194.	0.2	69
283	Effect of Chain Chirality on the Self-Assembly of Sickle Hemoglobin. Biophysical Journal, 2012, 103, 1130-1140.	0.2	38
284	Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Physical Biology, 2012, 9, 026010.	0.8	80
285	Tightly Coupled Atomistic-Continuum Simulations of Brain Blood Flow on Petaflop Supercomputers. Computing in Science and Engineering, 2012, 14, 58-67.	1.2	9
286	A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. Journal of Computational Physics, 2012, 231, 629-652.	1.9	65
287	Adaptive ANOVA decomposition of stochastic incompressible and compressible flows. Journal of Computational Physics, 2012, 231, 1587-1614.	1.9	106
288	A hybrid spectral/DG method for solving the phase-averaged ocean wave equation: Algorithm and validation. Journal of Computational Physics, 2012, 231, 4921-4953.	1.9	6

#	Article	IF	Citations
289	Wall Shear Stress-Based Model for Adhesive Dynamics of Red Blood Cells in Malaria. Biophysical Journal, 2011, 100, 2084-2093.	0.2	84
290	Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. Journal of Chemical Physics, 2011, 134, 204114.	1.2	131
291	Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells. Microvascular Research, 2011, 82, 163-170.	1.1	57
292	Extrapolation-Based Acceleration of Iterative Solvers: Application to Simulation of 3D Flows. Communications in Computational Physics, 2011, 9, 607-626.	0.7	9
293	Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study. Annals of Biomedical Engineering, 2011, 39, 297-309.	1.3	118
294	Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems. Annals of Biomedical Engineering, 2011, 39, 1041-1050.	1.3	88
295	Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. Journal of Fluids and Structures, 2011, 27, 838-847.	1.5	58
296	Sub-iteration leads to accuracy and stability enhancements of semi-implicit schemes for the Navierâ€"Stokes equations. Journal of Computational Physics, 2011, 230, 4384-4402.	1.9	19
297	Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics. Journal of Computational Physics, 2011, 230, 3765-3779.	1.9	51
298	Quantifying the biophysical characteristics of <i>Plasmodium-falciparum</i> -parasitized red blood cells in microcirculation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 35-39.	3.3	165
299	Wake-body Resonance of Long Flexible Structures is Dominated by Counterclockwise Orbits. Physical Review Letters, 2011, 107, 134502.	2.9	47
300	Vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of Fluid Mechanics, 2011, 677, 342-382.	1.4	135
301	Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11772-11777.	3.3	278
302	Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria. PLoS Computational Biology, 2011, 7, e1002270.	1.5	98
303	Stochastic bifurcation analysis of Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2010, 650, 391-413.	1.4	51
304	Systematic coarse-graining of spectrin-level red blood cell models. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1937-1948.	3.4	227
305	Multi-element probabilistic collocation method in high dimensions. Journal of Computational Physics, 2010, 229, 1536-1557.	1.9	177
306	Modeling electrokinetic flows by the smoothed profile method. Journal of Computational Physics, 2010, 229, 3828-3847.	1.9	27

#	Article	IF	CITATIONS
307	Time-dependent generalized polynomial chaos. Journal of Computational Physics, 2010, 229, 8333-8363.	1.9	131
308	Modeling of blood flow in arterial trees. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 612-623.	6.6	24
309	Blood Flow and Cell-Free Layer in Microvessels. Microcirculation, 2010, 17, 615-628.	1.0	207
310	A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics. Biophysical Journal, 2010, 98, 2215-2225.	0.2	460
311	EOFâ€based constrained sensor placement and field reconstruction from noisy ocean measurements: Application to Nantucket Sound. Journal of Geophysical Research, 2010, 115, .	3.3	22
312	Flow instability and wall shear stress variation in intracranial aneurysms. Journal of the Royal Society Interface, 2010, 7, 967-988.	1.5	71
313	Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow. Journal of Chemical Physics, 2010, 132, 144103.	1.2	65
314	Rheology, Microstructure and Migration in Brownian Colloidal Suspensions. Langmuir, 2010, 26, 133-142.	1.6	103
315	10.1063/1.3366658.1., 2010, , .		0
316	A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14189-14194.	3.3	26
317	Multi-element probabilistic collocation for sensitivity analysis in cellular signalling networks. IET Systems Biology, 2009, 3, 239-254.	0.8	6
318	Sensitivity analysis and stochastic simulations of nonâ€equilibrium plasma flow. International Journal for Numerical Methods in Engineering, 2009, 80, 738-766.	1.5	17
319	Analyzing Transient Turbulence in a Stenosed Carotid Artery by Proper Orthogonal Decomposition. Annals of Biomedical Engineering, 2009, 37, 2200-2217.	1.3	68
320	Wall Shear Stress and Pressure Distribution on Aneurysms and Infundibulae in the Posterior Communicating Artery Bifurcation. Annals of Biomedical Engineering, 2009, 37, 2469-2487.	1.3	45
321	LARGEâ€SCALE SIMULATION OF THE HUMAN ARTERIAL TREE. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 194-205.	0.9	64
322	Triple-decker: Interfacing atomistic–mesoscopic–continuum flow regimes. Journal of Computational Physics, 2009, 228, 1157-1171.	1.9	93
323	Smoothed profile method for particulate flows: Error analysis and simulations. Journal of Computational Physics, 2009, 228, 1750-1769.	1.9	80
324	Solving elliptic problems with non-Gaussian spatially-dependent random coefficients. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 1985-1995.	3.4	33

#	Article	IF	Citations
325	Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study. Macromolecules, 2009, 42, 3195-3200.	2.2	92
326	Velocity limit in DPD simulations of wall-bounded flows. Journal of Computational Physics, 2008, 227, 2540-2559.	1.9	88
327	Outflow Boundary Conditions for Arterial Networks with Multiple Outlets. Annals of Biomedical Engineering, 2008, 36, 1496-1514.	1.3	124
328	The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications. Journal of Computational Physics, 2008, 227, 9572-9595.	1.9	191
329	Sensitivity Analysis of the Shipboard Integrated Power System. Naval Engineers Journal, 2008, 120, 109-121.	0.1	1
330	Elimination of Vortex Streets in Bluff-Body Flows. Physical Review Letters, 2008, 100, 204501.	2.9	116
331	Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder. Journal of Fluid Mechanics, 2008, 606, 339-367.	1.4	47
332	Single-particle hydrodynamics in DPD: A new formulation. Europhysics Letters, 2008, 84, 10012.	0.7	53
333	Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions. Journal of Chemical Physics, 2008, 128, 144903.	1.2	42
334	Reverse Poiseuille Flow: the Numerical Viscometer. AIP Conference Proceedings, 2008, , .	0.3	1
335	Dissipative Particle Dynamics Simulation of Polymer- and Cell-Wall Depletion in Micro-Channels. AIP Conference Proceedings, 2008, , .	0.3	0
336	Accurate Coarse-Grained Modeling of Red Blood Cells. Physical Review Letters, 2008, 101, 118105.	2.9	308
337	Random Roughness Enhances Lift in Supersonic Flow. Physical Review Letters, 2007, 99, 104501.	2.9	13
338	Resonant Vibrations of Bluff Bodies Cause Multivortex Shedding and High Frequency Forces. Physical Review Letters, 2007, 99, 144503.	2.9	123
339	Runtime Visualization of the Human Arterial Tree. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 810-821.	2.9	6
340	A Reconstruction Method for Gappy and Noisy Arterial Flow Data. IEEE Transactions on Medical Imaging, 2007, 26, 1681-1697.	5.4	28
341	Stochastic Computational Fluid Mechanics. Computing in Science and Engineering, 2007, 9, 21-29.	1.2	155
342	Turbulent drag reduction by constant near-wall forcing. Journal of Fluid Mechanics, 2007, 582, 79-101.	1.4	32

#	Article	IF	Citations
343	Stochastic simulation of riser-sections with uncertain measured pressure loads and/or uncertain material properties. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 4250-4271.	3.4	29
344	Towards stable coupling methods for high-order discretization of fluid–structure interaction: Algorithms and observations. Journal of Computational Physics, 2007, 223, 489-518.	1.9	11
345	Hierarchical spectral basis and Galerkin formulation using barycentric quadrature grids in triangular elements. Journal of Engineering Mathematics, 2007, 56, 289-306.	0.6	0
346	Spectral interpolation in non-orthogonal domains: algorithms and applications. Journal of Engineering Mathematics, 2007, 56, 201-202.	0.6	2
347	NEKTAR, SPICE and Vortonics: using federated grids for large scale scientific applications. Cluster Computing, 2007, 10, 351-364.	3.5	22
348	Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. Journal of Chemical Physics, 2006, 124, 184101.	1.2	69
349	Modeling Random Roughness in Supersonic Flow Past a Wedge. , 2006, , .		4
350	Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal of Scientific Computing, 2006, 28, 901-928.	1.3	381
351	Simulating and visualizing the human arterial system on the TeraGrid. Future Generation Computer Systems, 2006, 22, 1011-1017.	4.9	15
352	A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake. Journal of Fluid Mechanics, 2006, 569, 185.	1.4	268
353	Stochastic heat transfer enhancement in a grooved channel. Journal of Fluid Mechanics, 2006, 565, 255.	1.4	23
354	Controlling Density Fluctuations in Wall-Bounded Dissipative Particle Dynamics Systems. Physical Review Letters, 2006, 96, 206001.	2.9	99
355	Three-dimensionality effects in flow around two tandem cylinders. Journal of Fluid Mechanics, 2006, 558, 387.	1.4	130
356	A discontinuous Galerkin method for two-temperature plasmas. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 3504-3527.	3.4	16
357	Long-term behavior of polynomial chaos in stochastic flow simulations. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 5582-5596.	3.4	134
358	Gappy data: To Krig or not to Krig?. Journal of Computational Physics, 2006, 212, 358-382.	1.9	104
359	Numerical studies of the stochastic Korteweg-de Vries equation. Journal of Computational Physics, 2006, 213, 676-703.	1.9	25
360	A family of time-staggered schemes for integrating hybrid DPD models for polymers: Algorithms and applications. Journal of Computational Physics, 2006, 218, 82-101.	1.9	19

#	Article	IF	CITATIONS
361	Uncertainty quantification in simulation science. Journal of Computational Physics, 2006, 217, 1-4.	1.9	29
362	Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs. Journal of Scientific Computing, 2006, 27, 455-464.	1.1	109
363	A sharp error estimate for the fast Gauss transform. Journal of Computational Physics, 2006, 219, 7-12.	1.9	14
364	Schmidt number effects in dissipative particle dynamics simulation of polymers. Journal of Chemical Physics, 2006, 125, 184902.	1.2	61
365	Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17164-17169.	3.3	149
366	Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model. Journal of Biomechanics, 2005, 38, 1283-1290.	0.9	43
367	A new method to impose no-slip boundary conditions in dissipative particle dynamics. Journal of Computational Physics, 2005, 207, 114-128.	1.9	173
368	Equation-free/Galerkin-free POD-assisted computation of incompressible flows. Journal of Computational Physics, 2005, 207, 568-587.	1.9	93
369	An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. Journal of Computational Physics, 2005, 209, 617-642.	1.9	474
370	Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows. Journal of Scientific Computing, 2005, 25, 323-346.	1.1	3
371	Selecting the Numerical Flux in Discontinuous Galerkin Methods for Diffusion Problems. Journal of Scientific Computing, 2005, 22-23, 385-411.	1.1	37
372	Strong and Auxiliary Forms of the Semi-Lagrangian Method for Incompressible Flows. Journal of Scientific Computing, 2005, 25, 323-346.	1.1	22
373	Simulations of dynamic self-assembly of paramagnetic microspheres in confined microgeometries. Journal of Micromechanics and Microengineering, 2005, 15, 2298-2308.	1.5	33
374	A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows. Journal of Chemical Physics, 2005, 123, 104107.	1.2	68
375	Modeling and optimization of colloidal micro-pumps. Journal of Micromechanics and Microengineering, 2004, 14, 567-575.	1.5	23
376	Noisy Inflows Cause a Shedding-Mode Switching in Flow Past an Oscillating Cylinder. Physical Review Letters, 2004, 92, 154501.	2.9	35
377	The stochastic piston problem. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15840-15845.	3.3	32
378	Multilevel Parallelization Models in CFD. Journal of Aerospace Computing, Information, and Communication, 2004, 1, 256-268.	0.8	5

#	Article	IF	Citations
379	Supersensitivity due to uncertain boundary conditions. International Journal for Numerical Methods in Engineering, 2004, 61, 2114-2138.	1.5	52
380	Spectral distributed Lagrange multiplier method: algorithm and benchmark tests. Journal of Computational Physics, 2004, 195, 695-717.	1.9	32
381	Dual-level parallelism for high-order CFD methods. Parallel Computing, 2004, 30, 1-20.	1.3	37
382	Dynamics of Self-Assembled Chaining in Magnetorheological Fluids. Langmuir, 2004, 20, 507-513.	1.6	99
383	Wave–structure interaction: simulation driven by quantitative imaging. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 729-755.	1.0	18
384	Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics, 2004, 519, 315-336.	1.4	149
385	Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation. SIAM Journal of Scientific Computing, 2004, 26, 578-590.	1.3	35
386	Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators. SIAM Journal of Scientific Computing, 2004, 26, 720-735.	1.3	51
387	Generalized polynomial chaos and random oscillators. International Journal for Numerical Methods in Engineering, 2004, 60, 571-596.	1.5	104
388	Effects of Oblique Inflow in Vortex-Induced Vibrations. Flow, Turbulence and Combustion, 2003, 71, 375-389.	1.4	66
389	Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 2003, 187, 137-167.	1.9	1,192
390	De-aliasing on non-uniform grids: algorithms and applications. Journal of Computational Physics, 2003, 191, 249-264.	1.9	137
391	P-refinement and P-threads. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 2191-2201.	3.4	10
392	A new stochastic approach to transient heat conduction modeling with uncertainty. International Journal of Heat and Mass Transfer, 2003, 46, 4681-4693.	2.5	191
393	DPIV-driven flow simulation: a new computational paradigm. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 547-565.	1.0	50
394	Coarse Resolution Turbulence Simulations With Spectral Vanishing Viscosity—Large-Eddy Simulations (SVV-LES). Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 886-891.	0.8	26
395	Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 51-59.	0.8	228
396	A low-dimensional model for simulating three-dimensional cylinder flow. Journal of Fluid Mechanics, 2002, 458, 181-190.	1.4	238

#	Article	IF	Citations
397	Numerical simulation of turbulent drag reduction using micro-bubbles. Journal of Fluid Mechanics, 2002, 468, 271-281.	1.4	143
398	Drag reduction in wall-bounded turbulence via a transverse travelling wave. Journal of Fluid Mechanics, 2002, 457, 1-34.	1.4	182
399	The WienerAskey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal of Scientific Computing, 2002, 24, 619-644.	1.3	3,612
400	Flow-induced vibrations of non-linear cables. Part 1: Models and algorithms. International Journal for Numerical Methods in Engineering, 2002, 55, 535-556.	1.5	9
401	Flow-induced vibrations of non-linear cables. Part 2: Simulations. International Journal for Numerical Methods in Engineering, 2002, 55, 557-571.	1.5	7
402	Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 4927-4948.	3.4	455
403	A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations. Journal of Scientific Computing, 2002, 17, 585-597.	1.1	13
404	Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation. Journal of Scientific Computing, 2002, 17, 319-338.	1.1	79
405	A Semi-Lagrangian High-Order Method for Navier–Stokes Equations. Journal of Computational Physics, 2001, 172, 658-684.	1.9	157
406	Parallel DNS algorithms on unstructured grids. Computer Methods in Applied Mechanics and Engineering, 2000, 184, 401-425.	3.4	4
407	Dynamics and low-dimensionality of a turbulent near wake. Journal of Fluid Mechanics, 2000, 410, 29-65.	1.4	331
408	Suppressing Wall Turbulence by Means of a Transverse Traveling Wave. Science, 2000, 288, 1230-1234.	6.0	184
409	Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations. Journal of Fluid Mechanics, 1999, 400, 91-124.	1.4	168
410	Basis Functions for Triangular and Quadrilateral High-Order Elements. SIAM Journal of Scientific Computing, 1999, 20, 1671-1695.	1.3	51
411	Simulating turbulence in complex geometries. Fluid Dynamics Research, 1999, 24, 343-362.	0.6	8
412	A Penalty Method for the Vorticity–Velocity Formulation. Journal of Computational Physics, 1999, 149, 32-58.	1.9	24
413	A discontinuous Galerkin method for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 1999, 29, 587-603.	0.9	62
414	A direct numerical simulation study of flow past a freely vibrating cable. Journal of Fluid Mechanics, 1997, 344, 95-136.	1.4	227

#	Article	IF	Citations
415	Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Physics of Fluids, 1997, 9, 788-806.	1.6	96
416	Unsteady Two-Dimensional Flows in Complex Geometries: Comparative Bifurcation Studies with Global Eigenfunction Expansions. SIAM Journal of Scientific Computing, 1997, 18, 775-805.	1.3	58
417	Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step. Journal of Fluid Mechanics, 1996, 321, 157-187.	1.4	117
418	Parallel benchmarks of turbulence in complex geometries. Computers and Fluids, 1996, 25, 677-698.	1.3	20
419	PARALLEL CFD BENCHMARKS ON CRAY COMPUTERS. International Journal of Parallel, Emergent and Distributed Systems, 1996, 9, 273-298.	0.4	1
420	A new triangular and tetrahedral basis for high-order (hp) finite element methods. International Journal for Numerical Methods in Engineering, 1995, 38, 3775-3802.	1.5	120
421	Unstructured Spectral Element Methods for Simulation of Turbulent Flows. Journal of Computational Physics, 1995, 122, 191-217.	1.9	131
422	Toward a Numerical Error Bar in CFD. Journal of Fluids Engineering, Transactions of the ASME, 1995, 117, 7-9.	0.8	18
423	Spectral element-FCT method for the one- and two-dimensional compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, 1994, 116, 113-121.	3.4	9
424	A Spectral Element-FCT Method for the Compressible Euler Equations. Journal of Computational Physics, 1994, 115, 65-85.	1.9	32
425	Generalized Stokes Eigenfunctions: A New Trial Basis for the Solution of Incompressible Navier-Stokes Equations. Journal of Computational Physics, 1994, 115, 121-146.	1.9	39
426	Simulation of heat and momentum transfer in complex microgeometries. Journal of Thermophysics and Heat Transfer, 1994, 8, 647-655.	0.9	205
427	Non-oscillatory Spectral Element Chebyshev Method for Shock Wave Calculations. Journal of Computational Physics, 1993, 107, 10-22.	1.9	21
428	Heat transfer enhancement in a transitional channel flow. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49, 257-267.	1.7	1
429	A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. Journal of Fluid Mechanics, 1993, 250, 1-42.	1.4	166
430	Nodes, Modes and Flow Codes. Physics Today, 1993, 46, 34-42.	0.3	126
431	A new mechanism of period doubling in free shear flows. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1329-1332.	1.6	24
432	Parallel spectral-element? Fourier simulation of turbulent flow over riblet-mounted surfaces. Theoretical and Computational Fluid Dynamics, 1992, 3, 219-229.	0.9	30

#	Article	IF	CITATIONS
433	Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. Journal of Fluid Mechanics, 1992, 238, 1-30.	1.4	315
434	Spectral element-FCT method for scalar hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 1992, 14, 707-727.	0.9	16
435	Dispersion in a curved tube during oscillatory flow. Journal of Fluid Mechanics, 1991, 223, 537.	1.4	43
436	Onset of three-dimensionality, equilibria, and early transition in flow over a backward-facing step. Journal of Fluid Mechanics, 1991, 231, 501-528.	1.4	176
437	Chaotic transport in two―and threeâ€dimensional flow past a cylinder. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1051-1062.	1.6	31
438	Chaotic advection in a complex annular geometry. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1063-1067.	1.6	3
439	High-order splitting methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 1991, 97, 414-443.	1.9	1,089
440	Hybrid spectral-element-low-order methods for incompressible flows. Journal of Scientific Computing, 1991, 6, 79-100.	1.1	9
441	Lowâ€dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Physics of Fluids A, Fluid Dynamics, 1991, 3, 2337-2354.	1.6	430
442	Computational reducibility of unsteady viscous flows. Physics of Fluids A, Fluid Dynamics, 1990, 2, 653-656.	1.6	30
443	The crisis of transport measures in chaotic flow past a cylinder. Physics of Fluids A, Fluid Dynamics, 1989, 1, 628-630.	1.6	5
444	Efficient removal of boundary-divergence errors in time-splitting methods. Journal of Scientific Computing, 1989, 4, 291-308.	1.1	38
445	Spectral element simulations of laminar and turbulent flows in complex geometries. Applied Numerical Mathematics, 1989, 6, 85-105.	1.2	58
446	Frequency selection and asymptotic states in laminar wakes. Journal of Fluid Mechanics, 1989, 199, 441-469.	1.4	229
447	Numerical simulation of forced convection heat transfer from a cylinder in crossflow. International Journal of Heat and Mass Transfer, 1988, 31, 107-118.	2.5	92
448	Minimum-dissipation transport enhancement by flow destabilization: Reynolds' analogy revisited. Journal of Fluid Mechanics, 1988, 192, 365-391.	1.4	123