George E Karniadakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The WienerAskey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal of Scientific Computing, 2002, 24, 619-644.	1.3	3,612
2	Physics-informed machine learning. Nature Reviews Physics, 2021, 3, 422-440.	11.9	1,789
3	Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 2003, 187, 137-167.	1.9	1,192
4	High-order splitting methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 1991, 97, 414-443.	1.9	1,089
5	Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science, 2020, 367, 1026-1030.	6.0	846
6	Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics, 2018, 357, 125-141.	1.9	739
7	DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Review, 2021, 63, 208-228.	4.2	677
8	Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 2021, 3, 218-229.	8.3	589
9	An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. Journal of Computational Physics, 2005, 209, 617-642.	1.9	474
10	Physics-informed neural networks for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112789.	3.4	464
11	A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics. Biophysical Journal, 2010, 98, 2215-2225.	0.2	460
12	Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 4927-4948.	3.4	455
13	Lowâ€dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Physics of Fluids A, Fluid Dynamics, 1991, 3, 2337-2354.	1.6	430
14	NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics, 2021, 426, 109951.	1.9	386
15	Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal of Scientific Computing, 2006, 28, 901-928.	1.3	381
16	Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. Journal of Computational Physics, 2020, 404, 109136.	1.9	373
17	fPINNs: Fractional Physics-Informed Neural Networks. SIAM Journal of Scientific Computing, 2019, 41, A2603-A2626.	1.3	365
18	Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineering, 2020, 365, 113028.	3.4	362

#	Article	IF	CITATIONS
19	B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 2021, 425, 109913.	1.9	350
20	Machine learning of linear differential equations using Gaussian processes. Journal of Computational Physics, 2017, 348, 683-693.	1.9	343
21	Dynamics and low-dimensionality of a turbulent near wake. Journal of Fluid Mechanics, 2000, 410, 29-65.	1.4	331
22	Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj Digital Medicine, 2019, 2, 115.	5.7	319
23	Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. Journal of Fluid Mechanics, 1992, 238, 1-30.	1.4	315
24	Accurate Coarse-Grained Modeling of Red Blood Cells. Physical Review Letters, 2008, 101, 118105.	2.9	308
25	Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1727-1738.	1.5	308
26	Physics-Informed Neural Networks for Heat Transfer Problems. Journal of Heat Transfer, 2021, 143, .	1.2	304
27	Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11772-11777.	3.3	278
28	A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. Journal of Computational Physics, 2020, 401, 109020.	1.9	270
29	A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake. Journal of Fluid Mechanics, 2006, 569, 185.	1.4	268
30	Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics Express, 2020, 28, 11618.	1.7	257
31	Deep learning of vortex-induced vibrations. Journal of Fluid Mechanics, 2019, 861, 119-137.	1.4	256
32	A low-dimensional model for simulating three-dimensional cylinder flow. Journal of Fluid Mechanics, 2002, 458, 181-190.	1.4	238
33	PPINN: Parareal physics-informed neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and Engineering, 2020, 370, 113250.	3.4	231
34	Frequency selection and asymptotic states in laminar wakes. Journal of Fluid Mechanics, 1989, 199, 441-469.	1.4	229
35	Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 51-59.	0.8	228
36	A direct numerical simulation study of flow past a freely vibrating cable. Journal of Fluid Mechanics, 1997, 344, 95-136.	1.4	227

#	Article	IF	CITATIONS
37	Systematic coarse-graining of spectrin-level red blood cell models. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1937-1948.	3.4	227
38	hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113547.	3.4	220
39	Fractional Sturm–Liouville eigen-problems: Theory and numerical approximation. Journal of Computational Physics, 2013, 252, 495-517.	1.9	213
40	Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. Journal of Computational Physics, 2019, 397, 108850.	1.9	212
41	What is the fractional Laplacian? A comparative review with new results. Journal of Computational Physics, 2020, 404, 109009.	1.9	208
42	Blood Flow and Cell-Free Layer in Microvessels. Microcirculation, 2010, 17, 615-628.	1.0	207
43	Simulation of heat and momentum transfer in complex microgeometries. Journal of Thermophysics and Heat Transfer, 1994, 8, 647-655.	0.9	205
44	Inferring solutions of differential equations using noisy multi-fidelity data. Journal of Computational Physics, 2017, 335, 736-746.	1.9	202
45	Fractional Spectral Collocation Method. SIAM Journal of Scientific Computing, 2014, 36, A40-A62.	1.3	198
46	Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7804-7809.	3.3	193
47	A new stochastic approach to transient heat conduction modeling with uncertainty. International Journal of Heat and Mass Transfer, 2003, 46, 4681-4693.	2.5	191
48	The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications. Journal of Computational Physics, 2008, 227, 9572-9595.	1.9	191
49	Suppressing Wall Turbulence by Means of a Transverse Traveling Wave. Science, 2000, 288, 1230-1234.	6.0	184
50	Drag reduction in wall-bounded turbulence via a transverse travelling wave. Journal of Fluid Mechanics, 2002, 457, 1-34.	1.4	182
51	Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7052-7062.	3.3	178
52	Multi-element probabilistic collocation method in high dimensions. Journal of Computational Physics, 2010, 229, 1536-1557.	1.9	177
53	Onset of three-dimensionality, equilibria, and early transition in flow over a backward-facing step. Journal of Fluid Mechanics, 1991, 231, 501-528.	1.4	176
54	Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160751.	1.0	175

#	Article	IF	CITATIONS
55	A new method to impose no-slip boundary conditions in dissipative particle dynamics. Journal of Computational Physics, 2005, 207, 114-128.	1.9	173
56	Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations. Journal of Fluid Mechanics, 1999, 400, 91-124.	1.4	168
57	Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations. SIAM Journal of Scientific Computing, 2020, 42, A292-A317.	1.3	168
58	A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. Journal of Fluid Mechanics, 1993, 250, 1-42.	1.4	166
59	Quantifying the biophysical characteristics of <i>Plasmodium-falciparum</i> -parasitized red blood cells in microcirculation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 35-39.	3.3	165
60	Multiscale Modeling Meets Machine Learning: What Can We Learn?. Archives of Computational Methods in Engineering, 2021, 28, 1017-1037.	6.0	164
61	Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations. SIAM Journal of Scientific Computing, 2018, 40, A172-A198.	1.3	162
62	A Semi-Lagrangian High-Order Method for Navier–Stokes Equations. Journal of Computational Physics, 2001, 172, 658-684.	1.9	157
63	Second-order approximations for variable order fractional derivatives: Algorithms and applications. Journal of Computational Physics, 2015, 293, 184-200.	1.9	156
64	Stochastic Computational Fluid Mechanics. Computing in Science and Engineering, 2007, 9, 21-29.	1.2	155
65	Lipid bilayer and cytoskeletal interactions in a red blood cell. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13356-13361.	3.3	155
66	A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Computational Biology, 2017, 13, e1005746.	1.5	154
67	Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. Journal of Computational Physics, 2015, 293, 312-338.	1.9	152
68	Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics, 2004, 519, 315-336.	1.4	149
69	Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17164-17169.	3.3	149
70	Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114823.	3.4	148
71	Numerical simulation of turbulent drag reduction using micro-bubbles. Journal of Fluid Mechanics, 2002, 468, 271-281.	1.4	143
72	Exponentially accurate spectral and spectral element methods for fractional ODEs. Journal of Computational Physics, 2014, 257, 460-480.	1.9	139

#	Article	IF	CITATIONS
73	De-aliasing on non-uniform grids: algorithms and applications. Journal of Computational Physics, 2003, 191, 249-264.	1.9	137
74	Vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of Fluid Mechanics, 2011, 677, 342-382.	1.4	135
75	Long-term behavior of polynomial chaos in stochastic flow simulations. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 5582-5596.	3.4	134
76	Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Computational Biology, 2020, 16, e1007575.	1.5	133
77	Unstructured Spectral Element Methods for Simulation of Turbulent Flows. Journal of Computational Physics, 1995, 122, 191-217.	1.9	131
78	Time-dependent generalized polynomial chaos. Journal of Computational Physics, 2010, 229, 8333-8363.	1.9	131
79	Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. Journal of Chemical Physics, 2011, 134, 204114.	1.2	131
80	Three-dimensionality effects in flow around two tandem cylinders. Journal of Fluid Mechanics, 2006, 558, 387.	1.4	130
81	111 years of Brownian motion. Soft Matter, 2016, 12, 6331-6346.	1.2	129
82	Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks. SIAM Journal of Scientific Computing, 2020, 42, A639-A665.	1.3	129
83	Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. Journal of Fluid Mechanics, 2021, 915, .	1.4	129
84	Nodes, Modes and Flow Codes. Physics Today, 1993, 46, 34-42.	0.3	126
85	Outflow Boundary Conditions for Arterial Networks with Multiple Outlets. Annals of Biomedical Engineering, 2008, 36, 1496-1514.	1.3	124
86	Minimum-dissipation transport enhancement by flow destabilization: Reynolds' analogy revisited. Journal of Fluid Mechanics, 1988, 192, 365-391.	1.4	123
87	Resonant Vibrations of Bluff Bodies Cause Multivortex Shedding and High Frequency Forces. Physical Review Letters, 2007, 99, 144503.	2.9	123
88	Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter, 2013, 9, 28-37.	1.2	122
89	A new triangular and tetrahedral basis for high-order (hp) finite element methods. International Journal for Numerical Methods in Engineering, 1995, 38, 3775-3802.	1.5	120
90	Parallel physics-informed neural networks via domain decomposition. Journal of Computational Physics, 2021, 447, 110683.	1.9	120

#	Article	IF	CITATIONS
91	Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200334.	1.0	119
92	Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study. Annals of Biomedical Engineering, 2011, 39, 297-309.	1.3	118
93	Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step. Journal of Fluid Mechanics, 1996, 321, 157-187.	1.4	117
94	Elimination of Vortex Streets in Bluff-Body Flows. Physical Review Letters, 2008, 100, 204501.	2.9	116
95	Reinforcement learning for bluff body active flow control in experiments and simulations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26091-26098.	3.3	114
96	Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks. Journal of Nondestructive Evaluation, 2020, 39, 1.	1.1	113
97	A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations. SIAM Journal of Scientific Computing, 2015, 37, A2710-A2732.	1.3	110
98	Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs. Journal of Scientific Computing, 2006, 27, 455-464.	1.1	109
99	Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. Journal of Chemical Physics, 2015, 143, 243128.	1.2	107
100	Adaptive ANOVA decomposition of stochastic incompressible and compressible flows. Journal of Computational Physics, 2012, 231, 1587-1614.	1.9	106
101	Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150018.	1.0	105
102	Generalized polynomial chaos and random oscillators. International Journal for Numerical Methods in Engineering, 2004, 60, 571-596.	1.5	104
103	Gappy data: To Krig or not to Krig?. Journal of Computational Physics, 2006, 212, 358-382.	1.9	104
104	A General Shear-Dependent Model for Thrombus Formation. PLoS Computational Biology, 2017, 13, e1005291.	1.5	104
105	Rheology, Microstructure and Migration in Brownian Colloidal Suspensions. Langmuir, 2010, 26, 133-142.	1.6	103
106	A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114587.	3.4	100
107	Dynamics of Self-Assembled Chaining in Magnetorheological Fluids. Langmuir, 2004, 20, 507-513.	1.6	99
108	Controlling Density Fluctuations in Wall-Bounded Dissipative Particle Dynamics Systems. Physical Review Letters, 2006, 96, 206001.	2.9	99

#	Article	IF	CITATIONS
109	Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models. Annals of Biomedical Engineering, 2014, 42, 1012-1023.	1.3	99
110	Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation. Soft Matter, 2014, 10, 8659-8672.	1.2	99
111	Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria. PLoS Computational Biology, 2011, 7, e1002270.	1.5	98
112	Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions. Computer Methods in Applied Mechanics and Engineering, 2017, 327, 478-502.	3.4	97
113	Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Physics of Fluids, 1997, 9, 788-806.	1.6	96
114	Equation-free/Galerkin-free POD-assisted computation of incompressible flows. Journal of Computational Physics, 2005, 207, 568-587.	1.9	93
115	Triple-decker: Interfacing atomistic–mesoscopic–continuum flow regimes. Journal of Computational Physics, 2009, 228, 1157-1171.	1.9	93
116	Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9574-9579.	3.3	93
117	Numerical simulation of forced convection heat transfer from a cylinder in crossflow. International Journal of Heat and Mass Transfer, 1988, 31, 107-118.	2.5	92
118	Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study. Macromolecules, 2009, 42, 3195-3200.	2.2	92
119	DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks. Journal of Computational Physics, 2021, 436, 110296.	1.9	92
120	A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114778.	3.4	92
121	Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data sets. SIAM Journal of Scientific Computing, 2016, 38, B521-B538.	1.3	91
122	Velocity limit in DPD simulations of wall-bounded flows. Journal of Computational Physics, 2008, 227, 2540-2559.	1.9	88
123	Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems. Annals of Biomedical Engineering, 2011, 39, 1041-1050.	1.3	88
124	Reweighted minimization method for stochastic elliptic differential equations. Journal of Computational Physics, 2013, 248, 87-108.	1.9	87
125	A unified Petrov–Galerkin spectral method for fractional PDEs. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 1545-1569	3.4	87
126	Biomechanics and biorheology of red blood cells in sickle cell anemia. Journal of Biomechanics, 2017, 50, 34-41.	0.9	87

#	Article	IF	CITATIONS
127	Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Langmuir, 2019, 35, 2431-2442.	1.6	87
128	Wall Shear Stress-Based Model for Adhesive Dynamics of Red Blood Cells in Malaria. Biophysical Journal, 2011, 100, 2084-2093.	0.2	84
129	Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations. SIAM Journal of Scientific Computing, 2014, 36, B684-B707.	1.3	84
130	Physicsâ€Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	84
131	Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism: Clinical and Experimental, 2018, 87, A1-A9.	1.5	83
132	Non-invasive inference of thrombus material properties with physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113603.	3.4	82
133	Smoothed profile method for particulate flows: Error analysis and simulations. Journal of Computational Physics, 2009, 228, 1750-1769.	1.9	80
134	Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Physical Biology, 2012, 9, 026010.	0.8	80
135	Analyses of internal structures and defects in materials using physics-informed neural networks. Science Advances, 2022, 8, eabk0644.	4.7	80
136	Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation. Journal of Scientific Computing, 2002, 17, 319-338.	1.1	79
137	Blood flow in small tubes: quantifying the transition to the non-continuum regime. Journal of Fluid Mechanics, 2013, 722, 214-239.	1.4	76
138	Energy-conserving dissipative particle dynamics with temperature-dependent properties. Journal of Computational Physics, 2014, 265, 113-127.	1.9	76
139	Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 63-76.	1.9	75
140	A fractional phase-field model for two-phase flows with tunable sharpness: Algorithms and simulations. Computer Methods in Applied Mechanics and Engineering, 2016, 305, 376-404.	3.4	74
141	Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions. Neurocomputing, 2022, 468, 165-180.	3.5	74
142	Computational Biorheology of Human Blood Flow in Health and Disease. Annals of Biomedical Engineering, 2014, 42, 368-387.	1.3	73
143	Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Application to polymer melts. Journal of Chemical Physics, 2017, 146, 014104.	1.2	73
144	Physics-informed neural networks for inverse problems in supersonic flows. Journal of Computational Physics, 2022, 466, 111402.	1.9	73

#	Article	IF	CITATIONS
145	Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation. Journal of Computational Physics, 2021, 447, 110676.	1.9	72
146	Flow instability and wall shear stress variation in intracranial aneurysms. Journal of the Royal Society Interface, 2010, 7, 967-988.	1.5	71
147	Operator learning for predicting multiscale bubble growth dynamics. Journal of Chemical Physics, 2021, 154, 104118.	1.2	71
148	Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. Journal of Chemical Physics, 2006, 124, 184101.	1.2	69
149	Quantifying the Rheological and Hemodynamic Characteristics of Sickle Cell Anemia. Biophysical Journal, 2012, 102, 185-194.	0.2	69
150	A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative. SIAM Journal on Numerical Analysis, 2018, 56, 24-49.	1.1	69
151	A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows. Journal of Chemical Physics, 2005, 123, 104107.	1.2	68
152	Analyzing Transient Turbulence in a Stenosed Carotid Artery by Proper Orthogonal Decomposition. Annals of Biomedical Engineering, 2009, 37, 2200-2217.	1.3	68
153	Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations. Proceedings of the United States of America, 2013, 110, 11326-11330.	3.3	68
154	Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130389.	1.6	68
155	SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural Networks, 2020, 132, 166-179.	3.3	68
156	Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond. Journal of the Royal Society Interface, 2016, 13, 20151107.	1.5	67
157	Multi-fidelity Bayesian neural networks: Algorithms and applications. Journal of Computational Physics, 2021, 438, 110361.	1.9	67
158	Effects of Oblique Inflow in Vortex-Induced Vibrations. Flow, Turbulence and Combustion, 2003, 71, 375-389.	1.4	66
159	Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. Journal of Computational Physics, 2016, 323, 219-242.	1.9	66
160	Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow. Journal of Chemical Physics, 2010, 132, 144103.	1.2	65
161	A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. Journal of Computational Physics, 2012, 231, 629-652.	1.9	65
162	Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics, 2015, 297, 13-31.	1.9	65

#	Article	IF	CITATIONS
163	Tempered Fractional Sturm–Liouville EigenProblems. SIAM Journal of Scientific Computing, 2015, 37, A1777-A1800.	1.3	65
164	LARGEâ€SCALE SIMULATION OF THE HUMAN ARTERIAL TREE. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 194-205.	0.9	64
165	Implicit-Explicit Difference Schemes for Nonlinear Fractional Differential Equations with Nonsmooth Solutions. SIAM Journal of Scientific Computing, 2016, 38, A3070-A3093.	1.3	63
166	A discontinuous Galerkin method for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 1999, 29, 587-603.	0.9	62
167	Schmidt number effects in dissipative particle dynamics simulation of polymers. Journal of Chemical Physics, 2006, 125, 184902.	1.2	61
168	Petrov–Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations. SIAM Journal of Scientific Computing, 2017, 39, A1003-A1037.	1.3	60
169	A dissipative particle dynamics method for arbitrarily complex geometries. Journal of Computational Physics, 2018, 355, 534-547.	1.9	60
170	Spectral element simulations of laminar and turbulent flows in complex geometries. Applied Numerical Mathematics, 1989, 6, 85-105.	1.2	58
171	Unsteady Two-Dimensional Flows in Complex Geometries: Comparative Bifurcation Studies with Global Eigenfunction Expansions. SIAM Journal of Scientific Computing, 1997, 18, 775-805.	1.3	58
172	Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. Journal of Fluids and Structures, 2011, 27, 838-847.	1.5	58
173	Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres. Journal of Fluid Mechanics, 2012, 711, 192-211.	1.4	58
174	Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction. Soft Matter, 2016, 12, 4339-4351.	1.2	58
175	Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. Journal of Computational Physics, 2016, 307, 15-33.	1.9	58
176	Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells. Microvascular Research, 2011, 82, 163-170.	1.1	57
177	Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of Fluid Mechanics, 2013, 717, 361-375.	1.4	57
178	A Generalized Spectral Collocation Method with Tunable Accuracy for Fractional Differential Equations with End-Point Singularities. SIAM Journal of Scientific Computing, 2017, 39, A360-A383.	1.3	56
179	Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9473-9478.	3.3	55
180	DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. Journal of Computational Physics, 2021, 447, 110698.	1.9	55

#	Article	IF	CITATIONS
181	Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus. Biophysical Journal, 2017, 113, 481-490.	0.2	54
182	Adaptive finite element method for fractional differential equations using hierarchical matrices. Computer Methods in Applied Mechanics and Engineering, 2017, 325, 56-76.	3.4	54
183	Single-particle hydrodynamics in DPD: A new formulation. Europhysics Letters, 2008, 84, 10012.	0.7	53
184	A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 759-783.	1.0	53
185	Supersensitivity due to uncertain boundary conditions. International Journal for Numerical Methods in Engineering, 2004, 61, 2114-2138.	1.5	52
186	Basis Functions for Triangular and Quadrilateral High-Order Elements. SIAM Journal of Scientific Computing, 1999, 20, 1671-1695.	1.3	51
187	Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators. SIAM Journal of Scientific Computing, 2004, 26, 720-735.	1.3	51
188	Stochastic bifurcation analysis of Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2010, 650, 391-413.	1.4	51
189	Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics. Journal of Computational Physics, 2011, 230, 3765-3779.	1.9	51
190	Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees. PLoS Computational Biology, 2015, 11, e1004410.	1.5	51
191	Quantifying Platelet Margination in Diabetic BloodÂFlow. Biophysical Journal, 2018, 115, 1371-1382.	0.2	51
192	A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Computational Biology, 2020, 16, e1007709.	1.5	51
193	MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease. PLoS Computational Biology, 2016, 12, e1005173.	1.5	51
194	DPIV-driven flow simulation: a new computational paradigm. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 547-565.	1.0	50
195	Potassium Buffering in the Neurovascular Unit: Models and Sensitivity Analysis. Biophysical Journal, 2013, 105, 2046-2054.	0.2	50
196	Generalized fictitious methods for fluid–structure interactions: Analysis and simulations. Journal of Computational Physics, 2013, 245, 317-346.	1.9	50
197	Spectral and Discontinuous Spectral Element Methods for Fractional Delay Equations. SIAM Journal of Scientific Computing, 2014, 36, B904-B929.	1.3	50
198	Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	50

#	Article	IF	CITATIONS
199	Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow. Journal of Fluid Mechanics, 2019, 881, 815-858.	1.4	49
200	Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients. Npj Digital Medicine, 2021, 4, 109.	5.7	48
201	Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder. Journal of Fluid Mechanics, 2008, 606, 339-367.	1.4	47
202	Wake-body Resonance of Long Flexible Structures is Dominated by Counterclockwise Orbits. Physical Review Letters, 2011, 107, 134502.	2.9	47
203	Patient-specific blood rheology in sickle-cell anaemia. Interface Focus, 2016, 6, 20150065.	1.5	47
204	OpenRBC: A Fast Simulator of Red Blood Cells atÂProtein Resolution. Biophysical Journal, 2017, 112, 2030-2037.	0.2	47
205	An Effective Fractal-Tree Closure Model for Simulating Blood Flow in Large Arterial Networks. Annals of Biomedical Engineering, 2015, 43, 1432-1442.	1.3	46
206	Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. Journal of Biomechanical Engineering, 2017, 139, .	0.6	46
207	Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes. Biophysical Journal, 2018, 114, 2014-2023.	0.2	46
208	Wall Shear Stress and Pressure Distribution on Aneurysms and Infundibulae in the Posterior Communicating Artery Bifurcation. Annals of Biomedical Engineering, 2009, 37, 2469-2487.	1.3	45
209	Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (MFNN) framework. Journal of Rheology, 2021, 65, 179-198.	1.3	45
210	Solving Inverse Stochastic Problems from Discrete Particle Observations Using the FokkerPlanck Equation and Physics-Informed Neural Networks. SIAM Journal of Scientific Computing, 2021, 43, B811-B830.	1.3	45
211	Multiscale modeling and simulation of brain blood flow. Physics of Fluids, 2016, 28, 021304.	1.6	44
212	Discovering variable fractional orders of advection–dispersion equations from field data using multi-fidelity Bayesian optimization. Journal of Computational Physics, 2017, 348, 694-714.	1.9	44
213	Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. Journal of the Royal Society Interface, 2021, 18, 20200834.	1.5	44
214	Dispersion in a curved tube during oscillatory flow. Journal of Fluid Mechanics, 1991, 223, 537.	1.4	43
215	Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model. Journal of Biomechanics, 2005, 38, 1283-1290.	0.9	43
216	GPU-accelerated red blood cells simulations with transport dissipative particle dynamics. Computer Physics Communications, 2017, 217, 171-179.	3.0	43

#	Article	IF	CITATIONS
217	A robotic Intelligent Towing Tank for learning complex fluid-structure dynamics. Science Robotics, 2019, 4, .	9.9	43
218	Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions. Journal of Chemical Physics, 2008, 128, 144903.	1.2	42
219	Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows. Journal of Fluids and Structures, 2013, 41, 33-42.	1.5	42
220	A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. Journal of Chemical Physics, 2016, 145, 044102.	1.2	42
221	Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. Journal of Chemical Physics, 2015, 143, 014101.	1.2	41
222	Computing Fractional Laplacians on Complex-Geometry Domains: Algorithms and Simulations. SIAM Journal of Scientific Computing, 2017, 39, A1320-A1344.	1.3	41
223	Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications. Computer Physics Communications, 2014, 185, 2809-2822.	3.0	40
224	Suppression of vortex-induced vibrations by fairings: A numerical study. Journal of Fluids and Structures, 2015, 54, 679-700.	1.5	40
225	Generalized Stokes Eigenfunctions: A New Trial Basis for the Solution of Incompressible Navier-Stokes Equations. Journal of Computational Physics, 1994, 115, 121-146.	1.9	39
226	Neural-net-induced Gaussian process regression for function approximation and PDE solution. Journal of Computational Physics, 2019, 384, 270-288.	1.9	39
227	Efficient removal of boundary-divergence errors in time-splitting methods. Journal of Scientific Computing, 1989, 4, 291-308.	1.1	38
228	Effect of Chain Chirality on the Self-Assembly of Sickle Hemoglobin. Biophysical Journal, 2012, 103, 1130-1140.	0.2	38
229	Optimal Error Estimates of Spectral PetrovGalerkin and Collocation Methods for Initial Value Problems of Fractional Differential Equations. SIAM Journal on Numerical Analysis, 2015, 53, 2074-2096.	1.1	38
230	Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows. Journal of Computational Physics, 2018, 363, 116-127.	1.9	38
231	A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations. Journal of Computational Physics, 2020, 405, 109141.	1.9	38
232	Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems. Computer Methods in Applied Mechanics and Engineering, 2022, 402, 115027.	3.4	38
233	Dual-level parallelism for high-order CFD methods. Parallel Computing, 2004, 30, 1-20.	1.3	37
234	Selecting the Numerical Flux in Discontinuous Galerkin Methods for Diffusion Problems. Journal of Scientific Computing, 2005, 22-23, 385-411.	1.1	37

#	Article	IF	CITATIONS
235	A Petrov–Galerkin spectral element method for fractional elliptic problems. Computer Methods in Applied Mechanics and Engineering, 2017, 324, 512-536.	3.4	37
236	A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 905-931.	3.4	37
237	Deep learning of inverse water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations. Ocean Engineering, 2022, 248, 110775.	1.9	37
238	Bayesian Physics Informed Neural Networks for real-world nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering, 2022, 402, 115346.	3.4	37
239	Efficient Multistep Methods for Tempered Fractional Calculus: Algorithms and Simulations. SIAM Journal of Scientific Computing, 2019, 41, A2510-A2535.	1.3	36
240	Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks. Nature Computational Science, 2021, 1, 744-753.	3.8	36
241	Noisy Inflows Cause a Shedding-Mode Switching in Flow Past an Oscillating Cylinder. Physical Review Letters, 2004, 92, 154501.	2.9	35
242	Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation. SIAM Journal of Scientific Computing, 2004, 26, 578-590.	1.3	35
243	Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach. Biomechanics and Modeling in Mechanobiology, 2017, 16, 249-261.	1.4	35
244	Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations. Journal of Fluid Mechanics, 2016, 809, 895-917.	1.4	34
245	Simulations of dynamic self-assembly of paramagnetic microspheres in confined microgeometries. Journal of Micromechanics and Microengineering, 2005, 15, 2298-2308.	1.5	33
246	Solving elliptic problems with non-Gaussian spatially-dependent random coefficients. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 1985-1995.	3.4	33
247	On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60Ű. Journal of Fluids and Structures, 2015, 53, 58-69.	1.5	33
248	nn-PINNs: Non-Newtonian physics-informed neural networks for complex fluid modeling. Soft Matter, 2021, 18, 172-185.	1.2	33
249	A Spectral Element-FCT Method for the Compressible Euler Equations. Journal of Computational Physics, 1994, 115, 65-85.	1.9	32
250	The stochastic piston problem. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15840-15845.	3.3	32
251	Spectral distributed Lagrange multiplier method: algorithm and benchmark tests. Journal of Computational Physics, 2004, 195, 695-717.	1.9	32
252	Turbulent drag reduction by constant near-wall forcing. Journal of Fluid Mechanics, 2007, 582, 79-101.	1.4	32

#	Article	IF	CITATIONS
253	Phasing mechanisms between the in-line and cross-flow vortex-induced vibrations of a long tensioned beam in shear flow. Computers and Structures, 2013, 122, 155-163.	2.4	32
254	Machine Learning of Space-Fractional Differential Equations. SIAM Journal of Scientific Computing, 2019, 41, A2485-A2509.	1.3	32
255	Physics-informed semantic inpainting: Application to geostatistical modeling. Journal of Computational Physics, 2020, 419, 109676.	1.9	32
256	A seamless multiscale operator neural network for inferring bubble dynamics. Journal of Fluid Mechanics, 2021, 929, .	1.4	32
257	Error estimates for DeepONets: a deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 2022, 6, .	1.6	32
258	Meta-learning PINN loss functions. Journal of Computational Physics, 2022, 458, 111121.	1.9	32
259	Chaotic transport in two―and threeâ€dimensional flow past a cylinder. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1051-1062.	1.6	31
260	Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition. Journal of Computational Physics, 2015, 297, 132-155.	1.9	31
261	Non-Equilibrium Dynamics of Vesicles and Micelles by Self-Assembly of Block Copolymers with Double Thermoresponsivity. Macromolecules, 2016, 49, 2895-2903.	2.2	31
262	Quantifying Fibrinogen-Dependent Aggregation of Red Blood Cells in Type 2 Diabetes Mellitus. Biophysical Journal, 2020, 119, 900-912.	0.2	31
263	Computational reducibility of unsteady viscous flows. Physics of Fluids A, Fluid Dynamics, 1990, 2, 653-656.	1.6	30
264	Parallel spectral-element?Fourier simulation of turbulent flow over riblet-mounted surfaces. Theoretical and Computational Fluid Dynamics, 1992, 3, 219-229.	0.9	30
265	Nature of intrinsic uncertainties in equilibrium molecular dynamics estimation of shear viscosity for simple and complex fluids. Journal of Chemical Physics, 2018, 149, 044510.	1.2	30
266	Uncertainty quantification in simulation science. Journal of Computational Physics, 2006, 217, 1-4.	1.9	29
267	Stochastic simulation of riser-sections with uncertain measured pressure loads and/or uncertain material properties. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 4250-4271.	3.4	29
268	A bidirectional model for communication in the neurovascular unit. Journal of Theoretical Biology, 2012, 311, 80-93.	0.8	29
269	Quantification of sampling uncertainty for molecular dynamics simulation: Time-dependent diffusion coefficient in simple fluids. Journal of Computational Physics, 2015, 302, 485-508.	1.9	29
270	A tunable finite difference method for fractional differential equations with non-smooth solutions. Computer Methods in Applied Mechanics and Engineering, 2017, 318, 193-214.	3.4	29

#	Article	IF	CITATIONS
271	Quantifying Shear-Induced Deformation and Detachment of Individual Adherent Sickle Red BloodÂCells. Biophysical Journal, 2019, 116, 360-371.	0.2	29
272	A Reconstruction Method for Gappy and Noisy Arterial Flow Data. IEEE Transactions on Medical Imaging, 2007, 26, 1681-1697.	5.4	28
273	Parallel multiscale simulations of a brain aneurysm. Journal of Computational Physics, 2013, 244, 131-147.	1.9	28
274	A Riesz Basis Galerkin Method for the Tempered Fractional Laplacian. SIAM Journal on Numerical Analysis, 2018, 56, 3010-3039.	1.1	28
275	Fractional Gray–Scott model: Well-posedness, discretization, and simulations. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 1030-1049.	3.4	28
276	One-dimensional modeling of fractional flow reserve in coronary artery disease: Uncertainty quantification and Bayesian optimization. Computer Methods in Applied Mechanics and Engineering, 2019, 353, 66-85.	3.4	28
277	Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows. Journal of Fluid Mechanics, 2021, 914, .	1.4	28
278	Modeling electrokinetic flows by the smoothed profile method. Journal of Computational Physics, 2010, 229, 3828-3847.	1.9	27
279	Numerical Methods for Stochastic Delay Differential Equations Via the Wong–Zakai Approximation. SIAM Journal of Scientific Computing, 2015, 37, A295-A318.	1.3	27
280	Coarse Resolution Turbulence Simulations With Spectral Vanishing Viscosity—Large-Eddy Simulations (SVV-LES). Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 886-891.	0.8	26
281	A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14189-14194.	3.3	26
282	Numerical studies of the stochastic Korteweg-de Vries equation. Journal of Computational Physics, 2006, 213, 676-703.	1.9	25
283	Error Estimates for the ANOVA Method with Polynomial Chaos Interpolation: Tensor Product Functions. SIAM Journal of Scientific Computing, 2012, 34, A1165-A1186.	1.3	25
284	Optimization of a z-source DC circuit breaker. , 2013, , .		25
285	On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations. Journal of Computational Physics, 2014, 270, 1-20.	1.9	25
286	U-shaped fairings suppress vortex-induced vibrations for cylinders in cross-flow. Journal of Fluid Mechanics, 2015, 782, 300-332.	1.4	25
287	A new mechanism of period doubling in free shear flows. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1329-1332.	1.6	24
288	A Penalty Method for the Vorticity–Velocity Formulation. Journal of Computational Physics, 1999, 149, 32-58.	1.9	24

#	Article	IF	CITATIONS
289	Modeling of blood flow in arterial trees. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 612-623.	6.6	24
290	A PetrovGalerkin Spectral Method of Linear Complexity for Fractional Multiterm ODEs on the Half Line. SIAM Journal of Scientific Computing, 2017, 39, A922-A946.	1.3	24
291	Patient-specific modeling of individual sickle cell behavior under transient hypoxia. PLoS Computational Biology, 2017, 13, e1005426.	1.5	24
292	Modeling and optimization of colloidal micro-pumps. Journal of Micromechanics and Microengineering, 2004, 14, 567-575.	1.5	23
293	Stochastic heat transfer enhancement in a grooved channel. Journal of Fluid Mechanics, 2006, 565, 255.	1.4	23
294	Time-Splitting Schemes for Fractional Differential Equations I: Smooth Solutions. SIAM Journal of Scientific Computing, 2015, 37, A1752-A1776.	1.3	23
295	A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems. Journal of Computational Physics, 2017, 344, 303-319.	1.9	23
296	Data-driven Modeling of Hemodynamics and its Role on Thrombus Size and Shape in Aortic Dissections. Scientific Reports, 2018, 8, 2515.	1.6	23
297	An atomistic fingerprint algorithm for learning <i>ab initio</i> molecular force fields. Journal of Chemical Physics, 2018, 148, 034101.	1.2	23
298	Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data fusion. Interface Focus, 2019, 9, 20180083.	1.5	23
299	Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network Fractional Calculus and Applied Analysis, 2019, 22, 1675-1688.	1.2	23
300	Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness. Neural Networks, 2020, 130, 85-99.	3.3	23
301	Learning functional priors and posteriors from data and physics. Journal of Computational Physics, 2022, 457, 111073.	1.9	23
302	Strong and Auxiliary Forms of the Semi-Lagrangian Method for Incompressible Flows. Journal of Scientific Computing, 2005, 25, 323-346.	1.1	22
303	NEKTAR, SPICE and Vortonics: using federated grids for large scale scientific applications. Cluster Computing, 2007, 10, 351-364.	3.5	22
304	EOFâ€based constrained sensor placement and field reconstruction from noisy ocean measurements: Application to Nantucket Sound. Journal of Geophysical Research, 2010, 115, .	3.3	22
305	Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations. Biophysical Journal, 2016, 110, 2085-2093.	0.2	22
306	Dynamic and rheological properties of soft biological cell suspensions. Rheologica Acta, 2016, 55, 433-449.	1.1	22

#	Article	IF	CITATIONS
307	Parametric Gaussian process regression for big data. Computational Mechanics, 2019, 64, 409-416.	2.2	22
308	Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements. European Journal of Applied Mathematics, 2021, 32, 397-420.	1.4	22
309	Improving SWATH Seakeeping Performance using Multi-Fidelity Gaussian Process and Bayesian Optimization. Journal of Ship Research, 2018, 62, 223-240.	0.5	22
310	How the spleen reshapes and retains young and old red blood cells: A computational investigation. PLoS Computational Biology, 2021, 17, e1009516.	1.5	22
311	Towards a Unified theory of Fractional and Nonlocal Vector Calculus. Fractional Calculus and Applied Analysis, 2021, 24, 1301-1355.	1.2	22
312	Non-oscillatory Spectral Element Chebyshev Method for Shock Wave Calculations. Journal of Computational Physics, 1993, 107, 10-22.	1.9	21
313	Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium. Physical Review E, 2015, 92, 053302.	0.8	21
314	Construction of non-Markovian coarse-grained models employing the Mori–Zwanzig formalism and iterative Boltzmann inversion. Journal of Chemical Physics, 2017, 147, 244110.	1.2	21
315	Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Computer Methods in Applied Mechanics and Engineering, 2019, 348, 377-395.	3.4	21
316	Active- and transfer-learning applied to microscale-macroscale coupling to simulate viscoelastic flows. Journal of Computational Physics, 2021, 427, 110069.	1.9	21
317	A large-eddy simulation study on the similarity between free vibrations of a flexible cylinder and forced vibrations of a rigid cylinder. Journal of Fluids and Structures, 2021, 101, 103223.	1.5	21
318	Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator–regression neural network. Journal of the Royal Society Interface, 2022, 19, 20210670.	1.5	21
319	Parallel benchmarks of turbulence in complex geometries. Computers and Fluids, 1996, 25, 677-698.	1.3	20
320	cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. Journal of Chemical Physics, 2016, 145, 144109.	1.2	20
321	A computational mechanics special issue on: data-driven modeling and simulation—theory, methods, and applications. Computational Mechanics, 2019, 64, 275-277.	2.2	20
322	A family of time-staggered schemes for integrating hybrid DPD models for polymers: Algorithms and applications. Journal of Computational Physics, 2006, 218, 82-101.	1.9	19
323	Sub-iteration leads to accuracy and stability enhancements of semi-implicit schemes for the Navier–Stokes equations. Journal of Computational Physics, 2011, 230, 4384-4402.	1.9	19
324	Adaptive Discontinuous Galerkin Method for Response-Excitation PDF Equations. SIAM Journal of Scientific Computing, 2013, 35, B890-B911.	1.3	19

#	ARTICLE	IF	CITATIONS
325	Stochastic testing simulator for integrated circuits and MEMS: Hierarchical and sparse techniques. , 2014, , .		19
326	Predictive modelling of thrombus formation in diabetic retinal microaneurysms. Royal Society Open Science, 2020, 7, 201102.	1.1	19
327	An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City. PLoS Computational Biology, 2021, 17, e1009334.	1.5	19
328	Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture. Energy Conversion and Management, 2022, 252, 115063.	4.4	19
329	Toward a Numerical Error Bar in CFD. Journal of Fluids Engineering, Transactions of the ASME, 1995, 117, 7-9.	0.8	18
330	Wave–structure interaction: simulation driven by quantitative imaging. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 729-755.	1.0	18
331	Adaptive multi-element polynomial chaos with discrete measure: Algorithms and application to SPDEs. Applied Numerical Mathematics, 2015, 90, 91-110.	1.2	18
332	Fractional Burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous Galerkin methods. Journal of Computational Physics, 2017, 336, 143-163.	1.9	18
333	Systematic parameter inference in stochastic mesoscopic modeling. Journal of Computational Physics, 2017, 330, 571-593.	1.9	18
334	Direct numerical simulations of two-phase flow in an inclined pipe. Journal of Fluid Mechanics, 2017, 825, 189-207.	1.4	18
335	A New Class of Semi-Implicit Methods with Linear Complexity for Nonlinear Fractional Differential Equations. SIAM Journal of Scientific Computing, 2018, 40, A2986-A3011.	1.3	18
336	Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies. Science Advances, 2019, 5, eaax3905.	4.7	18
337	GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	18
338	Sensitivity analysis and stochastic simulations of nonâ€equilibrium plasma flow. International Journal for Numerical Methods in Engineering, 2009, 80, 738-766.	1.5	17
339	Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces. Soft Matter, 2019, 15, 1747-1757.	1.2	17
340	Learning functionals via LSTM neural networks for predicting vessel dynamics in extreme sea states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20190897.	1.0	17
341	Spectral element-FCT method for scalar hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 1992, 14, 707-727.	0.9	16
342	A discontinuous Galerkin method for two-temperature plasmas. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 3504-3527.	3.4	16

#	Article	IF	CITATIONS
343	A convergence study for SPDEs using combined Polynomial Chaos and Dynamically-Orthogonal schemes. Journal of Computational Physics, 2013, 245, 281-301.	1.9	16
344	Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers. Biophysical Journal, 2017, 113, 48-59.	0.2	16
345	A phase-field method for boiling heat transfer. Journal of Computational Physics, 2021, 435, 110239.	1.9	16
346	Simulating and visualizing the human arterial system on the TeraGrid. Future Generation Computer Systems, 2006, 22, 1011-1017.	4.9	15
347	Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow. Physical Review E, 2016, 93, 033312.	0.8	15
348	Nonlocal Flocking Dynamics: Learning the Fractional Order of PDEs from Particle Simulations. Communications on Applied Mathematics and Computation, 2019, 1, 597-619.	0.7	15
349	Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks. Advances in Dynamics, Patterns, Cognition, 2020, , 323-343.	0.2	15
350	Multiphysics and multiscale modeling of microthrombosis in COVID-19. PLoS Computational Biology, 2022, 18, e1009892.	1.5	15
351	Approximation rates of DeepONets for learning operators arising from advection–diffusion equations. Neural Networks, 2022, 153, 411-426.	3.3	15
352	A sharp error estimate for the fast Gauss transform. Journal of Computational Physics, 2006, 219, 7-12.	1.9	14
353	Flow in complex domains simulated by Dissipative Particle Dynamics driven by geometry-specific body-forces. Journal of Computational Physics, 2016, 305, 906-920.	1.9	14
354	Strong and weak convergence order of finite element methods for stochastic PDEs with spatial white noise. Numerische Mathematik, 2016, 134, 61-89.	0.9	14
355	A spectral-element/Fourier smoothed profile method for large-eddy simulations of complex VIV problems. Computers and Fluids, 2018, 172, 84-96.	1.3	14
356	Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Soft Matter, 2020, 16, 4756-4766.	1.2	14
357	A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations. Journal of Scientific Computing, 2002, 17, 585-597.	1.1	13
358	Random Roughness Enhances Lift in Supersonic Flow. Physical Review Letters, 2007, 99, 104501.	2.9	13
359	Wick–Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130001.	1.0	13
360	Stochastic simulations of ocean waves: An uncertainty quantification study. Ocean Modelling, 2015, 86, 15-35.	1.0	13

#	Article	IF	CITATIONS
361	An entropy-viscosity large eddy simulation study of turbulent flow in a flexible pipe. Journal of Fluid Mechanics, 2019, 859, 691-730.	1.4	13
362	In silico biophysics and hemorheology of blood hyperviscosity syndrome. Biophysical Journal, 2021, 120, 2723-2733.	0.2	13
363	Computational investigation of blood cell transport in retinal microaneurysms. PLoS Computational Biology, 2022, 18, e1009728.	1.5	13
364	Scalable algorithms for physics-informed neural and graph networks. Data-Centric Engineering, 2022, 3, .	1.2	13
365	A Multistage Wiener Chaos Expansion Method for Stochastic Advection-Diffusion-Reaction Equations. SIAM Journal of Scientific Computing, 2012, 34, A914-A936.	1.3	12
366	Computational modeling of biomechanics andÂbiorheology of heated red blood cells. Biophysical Journal, 2021, 120, 4663-4671.	0.2	12
367	A fast multi-fidelity method with uncertainty quantification for complex data correlations: Application to vortex-induced vibrations of marine risers. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114212.	3.4	12
368	Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. Fractional Calculus and Applied Analysis, 2022, 25, 453-487.	1.2	12
369	Towards stable coupling methods for high-order discretization of fluid–structure interaction: Algorithms and observations. Journal of Computational Physics, 2007, 223, 489-518.	1.9	11
370	Stochastic smoothed profile method for modeling random roughness in flow problems. Computer Methods in Applied Mechanics and Engineering, 2013, 263, 99-112.	3.4	11
371	A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall. Journal of the Royal Society Interface, 2016, 13, 20150964.	1.5	11
372	A stabilized phase-field method for two-phase flow at high Reynolds number and large density/viscosity ratio. Journal of Computational Physics, 2019, 397, 108832.	1.9	11
373	Potential Flow Generator With <i>L</i> ₂ Optimal Transport Regularity for Generative Models. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 528-538.	7.2	11
374	P-refinement and P-threads. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 2191-2201.	3.4	10
375	The flow dynamics of the garden-hoseÂinstability. Journal of Fluid Mechanics, 2016, 800, 595-612.	1.4	10
376	Density-dependent finite system-size effects in equilibrium molecular dynamics estimation of shear viscosity: Hydrodynamic and configurational study. Journal of Chemical Physics, 2019, 151, 104101.	1.2	10
377	Hybrid spectral-element-low-order methods for incompressible flows. Journal of Scientific Computing, 1991, 6, 79-100.	1.1	9
378	Spectral element-FCT method for the one- and two-dimensional compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, 1994, 116, 113-121.	3.4	9

#	Article	IF	CITATIONS
379	Flow-induced vibrations of non-linear cables. Part 1: Models and algorithms. International Journal for Numerical Methods in Engineering, 2002, 55, 535-556.	1.5	9
380	Extrapolation-Based Acceleration of Iterative Solvers: Application to Simulation of 3D Flows. Communications in Computational Physics, 2011, 9, 607-626.	0.7	9
381	Tightly Coupled Atomistic-Continuum Simulations of Brain Blood Flow on Petaflop Supercomputers. Computing in Science and Engineering, 2012, 14, 58-67.	1.2	9
382	Statistical analysis and simulation of random shocks in stochastic Burgers equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140080.	1.0	9
383	A general CFD framework for fault-resilient simulations based on multi-resolution information fusion. Journal of Computational Physics, 2017, 347, 290-304.	1.9	9
384	Molecular hydrodynamics: Vortex formation and sound wave propagation. Journal of Chemical Physics, 2018, 148, 024506.	1.2	9
385	A Computational Stochastic Methodology for the Design of Random Meta-materials under Geometric Constraints. SIAM Journal of Scientific Computing, 2018, 40, B353-B378.	1.3	9
386	A Multifidelity Framework and Uncertainty Quantification for Sea Surface Temperature in the Massachusetts and Cape Cod Bays. Earth and Space Science, 2020, 7, e2019EA000954.	1.1	9
387	A fast solver for spectral elements applied to fractional differential equations using hierarchical matrix approximation. Computer Methods in Applied Mechanics and Engineering, 2020, 366, 113053.	3.4	9
388	Learning Poisson Systems and Trajectories of Autonomous Systems via Poisson Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 8271-8283.	7.2	9
389	Simulating turbulence in complex geometries. Fluid Dynamics Research, 1999, 24, 343-362.	0.6	8
390	Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise. SIAM Journal on Numerical Analysis, 2015, 53, 153-183.	1.1	8
391	A resilient and efficient CFD framework: Statistical learning tools for multi-fidelity and heterogeneous information fusion. Journal of Computational Physics, 2017, 344, 516-533.	1.9	8
392	Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics. Journal of Computational Physics, 2019, 393, 214-228.	1.9	8
393	Fractional magneto-hydrodynamics: Algorithms and applications. Journal of Computational Physics, 2019, 378, 44-62.	1.9	8
394	Multiscale parareal algorithm for long-time mesoscopic simulations of microvascular blood flow in zebrafish. Computational Mechanics, 2021, 68, 1131-1152.	2.2	8
395	Generative Ensemble Regression: Learning Particle Dynamics from Observations of Ensembles with Physics-informed Deep Generative Models. SIAM Journal of Scientific Computing, 2022, 44, B80-B99.	1.3	8
396	Flow-induced vibrations of non-linear cables. Part 2: Simulations. International Journal for Numerical Methods in Engineering, 2002, 55, 557-571.	1.5	7

#	Article	IF	CITATIONS
397	A Recursive Sparse Grid Collocation Method for Differential Equations with White Noise. SIAM Journal of Scientific Computing, 2014, 36, A1652-A1677.	1.3	7
398	Effects of thermal noise on the transitional dynamics of an inextensible elastic filament in stagnation flow. Soft Matter, 2015, 11, 4962-4972.	1.2	7
399	Numerical Methods for SPDEs with Tempered Stable Processes. SIAM Journal of Scientific Computing, 2015, 37, A1197-A1217.	1.3	7
400	Visualizing multiphysics, fluid-structure interaction phenomena in intracranial aneurysms. Parallel Computing, 2016, 55, 9-16.	1.3	7
401	Preface: theory, methods, and applications of mesoscopic modeling. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1-2.	1.9	7
402	A probabilistic framework for multidisciplinary design: Application to the hydrostructural optimization of supercavitating hydrofoils. International Journal for Numerical Methods in Engineering, 2018, 116, 246-269.	1.5	7
403	Runtime Visualization of the Human Arterial Tree. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 810-821.	2.9	6
404	Multi-element probabilistic collocation for sensitivity analysis in cellular signalling networks. IET Systems Biology, 2009, 3, 239-254.	0.8	6
405	A hybrid spectral/DG method for solving the phase-averaged ocean wave equation: Algorithm and validation. Journal of Computational Physics, 2012, 231, 4921-4953.	1.9	6
406	Numerical solution of the Stratonovich- and Ito–Euler equations: Application to the stochastic piston problem. Journal of Computational Physics, 2013, 236, 15-27.	1.9	6
407	Algorithms for Propagating Uncertainty Across Heterogeneous Domains. SIAM Journal of Scientific Computing, 2015, 37, A3030-A3054.	1.3	6
408	Stochastic Domain Decomposition via Moment Minimization. SIAM Journal of Scientific Computing, 2018, 40, A2152-A2173.	1.3	6
409	Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. Journal of Physical Chemistry B, 2018, 122, 11302-11310.	1.2	6
410	The crisis of transport measures in chaotic flow past a cylinder. Physics of Fluids A, Fluid Dynamics, 1989, 1, 628-630.	1.6	5
411	Multilevel Parallelization Models in CFD. Journal of Aerospace Computing, Information, and Communication, 2004, 1, 256-268.	0.8	5
412	Brownian Motion of a Rayleigh Particle Confined in a Channel: A Generalized Langevin Equation Approach. Journal of Statistical Physics, 2015, 158, 1100-1125.	0.5	5
413	Anisotropic single-particle dissipative particle dynamics model. Journal of Computational Physics, 2017, 336, 481-491.	1.9	5
414	Fractional spectral vanishing viscosity method: Application to the quasi-geostrophic equation. Chaos, Solitons and Fractals, 2017, 102, 327-332.	2.5	5

#	Article	IF	CITATIONS
415	A Spectral Penalty Method for Two-Sided Fractional Differential Equations with General Boundary Conditions. SIAM Journal of Scientific Computing, 2019, 41, A1840-A1866.	1.3	5
416	DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal Graphs. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 985-998.	7.2	5
417	Parallel DNS algorithms on unstructured grids. Computer Methods in Applied Mechanics and Engineering, 2000, 184, 401-425.	3.4	4
418	Modeling Random Roughness in Supersonic Flow Past a Wedge. , 2006, , .		4
419	A semi″ocal spectral/hp element solver for linear elasticity problems. International Journal for Numerical Methods in Engineering, 2014, 100, 347-373.	1.5	4
420	Turbulence in a Localized Puff in a Pipe. Flow, Turbulence and Combustion, 2019, 103, 1-24.	1.4	4
421	Chaotic advection in a complex annular geometry. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1063-1067.	1.6	3
422	Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows. Journal of Scientific Computing, 2005, 25, 323-346.	1.1	3
423	Electrostatic correlations near charged planar surfaces. Journal of Chemical Physics, 2014, 141, 094703.	1.2	3
424	Adaptive WickMalliavin Approximation to Nonlinear SPDEs with Discrete Random Variables. SIAM Journal of Scientific Computing, 2015, 37, A1872-A1890.	1.3	3
425	Efficient two-dimensional simulations of the fractional Szabo equation with different time-stepping schemes. Computers and Mathematics With Applications, 2017, 73, 1286-1297.	1.4	3
426	Variable-Order Fractional Models for Wall-Bounded Turbulent Flows. Entropy, 2021, 23, 782.	1.1	3
427	Theory and simulation of electrokinetic fluctuations in electrolyte solutions at the mesoscale. Journal of Fluid Mechanics, 2022, 942, .	1.4	3
428	Spectral interpolation in non-orthogonal domains: algorithms and applications. Journal of Engineering Mathematics, 2007, 56, 201-202.	0.6	2
429	Time Correlation Functions of Brownian Motion and Evaluation of Friction Coefficient in the Near-Brownian-Limit Regime. Multiscale Modeling and Simulation, 2014, 12, 225-248.	0.6	2
430	Coarse-Grained Modeling of Protein Unfolding Dynamics. Multiscale Modeling and Simulation, 2014, 12, 109-118.	0.6	2
431	Moving toward realistic models. Physics of Life Reviews, 2018, 26-27, 96-99.	1.5	2
432	An open-source parallel code for computing the spectral fractional Laplacian on 3D complex geometry domains. Computer Physics Communications, 2021, 261, 107695.	3.0	2

0

#	Article	IF	CITATIONS
433	From Data to Assessment Models, Demonstrated through a Digital Twin of Marine Risers. , 2021, , .		2
434	Heat transfer enhancement in a transitional channel flow. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49, 257-267.	1.7	1
435	PARALLEL CFD BENCHMARKS ON CRAY COMPUTERS. International Journal of Parallel, Emergent and Distributed Systems, 1996, 9, 273-298.	0.4	1
436	Sensitivity Analysis of the Shipboard Integrated Power System. Naval Engineers Journal, 2008, 120, 109-121.	0.1	1
437	Reverse Poiseuille Flow: the Numerical Viscometer. AIP Conference Proceedings, 2008, , .	0.3	1
438	Bi-directional coupling between a PDE-domain and an adjacent Data-domain equipped with multi-fidelity sensors. Journal of Computational Physics, 2018, 374, 121-134.	1.9	1
439	Hierarchical spectral basis and Galerkin formulation using barycentric quadrature grids in triangular elements. Journal of Engineering Mathematics, 2007, 56, 289-306.	0.6	0
440	Dissipative Particle Dynamics Simulation of Polymer- and Cell-Wall Depletion in Micro-Channels. AIP Conference Proceedings, 2008, , .	0.3	0
441	Integrated simulation framework for crash back operation. , 2013, , .		0
442	Multiscale Modeling of Diseases: Overview. , 2018, , 1-10.		0
443	10.1063/1.3366658.1., 2010, , .		0
444	Multiscale Modeling of Diseases: Overview. , 2020, , 2541-2550.		0
445	Title is missing!. , 2020, 16, e1007709.		0
446	Title is missing!. , 2020, 16, e1007709.		0
447	Title is missing!. , 2020, 16, e1007709.		0