Takayuki Kohchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diminished Auxin Signaling Triggers Cellular Reprogramming by Inducing a Regeneration Factor in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 384-400.	1.5	23
2	Improved clearing method contributes to deep imaging of plant organs. Communications Biology, 2022, 5, 12.	2.0	17
3	A glycogen synthase kinase 3-like kinase MpGSK regulates cell differentiation in <i>Marchantia polymorpha</i> . Plant Biotechnology, 2022, 39, 65-72.	0.5	5
4	Migration of prospindle before the first asymmetric division in germinating spore of <i>Marchantia polymorpha</i> . Plant Biotechnology, 2022, 39, 5-12.	0.5	2
5	Distinct Functions of the Atypical Terminal Hydrophilic Domain of the HKT Transporter in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, , .	1.5	1
6	CRISPR/Cas9-mediated disruption of <i>ALLENE OXIDE SYNTHASE</i> results in defective 12-oxo-phytodienoic acid accumulation and reduced defense against spider mite (<i>Tetranychus) Tj ETQq(39_191-194</i>	0.0 rgBT 0.0	/Oyerlock 10
7	Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 1063-1077.	1.5	1
8	Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040055.	2.3	7
9	Fungal-Type Terpene Synthases in <i>Marchantia polymorpha</i> Are Involved in Sesquiterpene Biosynthesis in Oil Body Cells. Plant and Cell Physiology, 2021, 62, 528-537.	1.5	11
10	Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2021, 33, 2395-2411.	3.1	28
11	Development and Molecular Genetics of <i>Marchantia polymorpha</i> . Annual Review of Plant Biology, 2021, 72, 677-702.	8.6	61
12	Coordination between growth and stress responses by DELLA in the liverwort Marchantia polymorpha. Current Biology, 2021, 31, 3678-3686.e11.	1.8	28
13	Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. ELife, 2021, 10, .	2.8	26
14	A plant-specific DYRK kinase DYRKP coordinates cell morphology in Marchantia polymorpha. Journal of Plant Research, 2021, 134, 1265-1277.	1.2	5
15	Plastid Transformation of Sporelings from the Liverwort Marchantia polymorpha L Methods in Molecular Biology, 2021, 2317, 333-341.	0.4	1
16	Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Current Biology, 2021, 31, 5522-5532.e7.	1.8	36
17	Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. Plant and Cell Physiology, 2020, 61, 470-480.	1.5	7
18	Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. Plant and Cell Physiology, 2020, 61, 631-643.	1.5	20

#	Article	IF	CITATIONS
19	Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia polymorpha. Current Biology, 2020, 30, 3833-3840.e4.	1.8	54
20	The liverwort oil body is formed by redirection of the secretory pathway. Nature Communications, 2020, 11, 6152.	5.8	44
21	Design principles of a minimal auxin response system. Nature Plants, 2020, 6, 473-482.	4.7	71
22	Positional cues regulate dorsal organ formation in the liverwort Marchantia polymorpha. Journal of Plant Research, 2020, 133, 311-321.	1.2	28
23	Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Current Biology, 2020, 30, 573-588.e7.	1.8	160
24	Phytochrome and Light Signaling in Marchantia. Methods in Molecular Biology, 2019, 2026, 215-223.	0.4	5
25	Building new insights in plant gametogenesis from an evolutionary perspective. Nature Plants, 2019, 5, 663-669.	4.7	46
26	The RopGEF KARAPPO Is Essential for the Initiation of Vegetative Reproduction in Marchantia polymorpha. Current Biology, 2019, 29, 3525-3531.e7.	1.8	23
27	Cytokinin signaling coordinates development of diverse organs in Marchantia polymorpha. Plant Signaling and Behavior, 2019, 14, 1668232.	1.2	8
28	An Early Arising Role of the MicroRNA156/529-SPL Module in Reproductive Development Revealed by the Liverwort Marchantia polymorpha. Current Biology, 2019, 29, 3307-3314.e5.	1.8	34
29	A Single JAZ Repressor Controls the Jasmonate Pathway in Marchantia polymorpha. Molecular Plant, 2019, 12, 185-198.	3.9	107
30	Observation of Phototropic Responses in the Liverwort Marchantia polymorpha. Methods in Molecular Biology, 2019, 1924, 53-61.	0.4	0
31	Cytokinin Signaling Is Essential for Organ Formation in <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2019, 60, 1842-1854.	1.5	41
32	Physiological function of photoreceptor UVR8 in UV-B tolerance in the liverwort Marchantia polymorpha. Planta, 2019, 249, 1349-1364.	1.6	29
33	Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. PLoS Genetics, 2019, 15, e1007997.	1.5	55
34	Reproductive Induction is a Far-Red High Irradiance Response that is Mediated by Phytochrome and PHYTOCHROME INTERACTING FACTOR in Marchantia polymorpha. Plant and Cell Physiology, 2019, 60, 1136-1145.	1.5	46
35	GEMMA CUP-ASSOCIATED MYB1, an Ortholog of Axillary Meristem Regulators, Is Essential in Vegetative Reproduction in MarchantiaÂpolymorpha. Current Biology, 2019, 29, 3987-3995.e5.	1.8	35
36	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLoS Biology, 2019, 17, e3000560.	2.6	34

#	Article	IF	CITATIONS
37	A <i>cis</i> â€acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO Journal, 2019, 38, .	3.5	59
38	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
39	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		Ο
40	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
41	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		Ο
42	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
43	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. , 2019, 17, e3000560.		0
44	Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nature Chemical Biology, 2018, 14, 480-488.	3.9	194
45	Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants. Current Biology, 2018, 28, 479-486.e5.	1.8	87
46	An evolutionarily conserved NIMA-related kinase directs rhizoid tip growth in the basal land plant Marchantia polymorpha. Development (Cambridge), 2018, 145, .	1.2	30
47	Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. Journal of Experimental Botany, 2018, 69, 291-301.	2.4	53
48	An Evolutionarily Conserved Abscisic Acid Signaling Pathway Regulates Dormancy in the Liverwort Marchantia polymorpha. Current Biology, 2018, 28, 3691-3699.e3.	1.8	68
49	Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nature Communications, 2018, 9, 5283.	5.8	54
50	Novel gateway binary vectors for rapid tripartite DNA assembly and promoter analysis with various reporters and tags in the liverwort Marchantia polymorpha. PLoS ONE, 2018, 13, e0204964.	1.1	22
51	Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE, 2018, 13, e0205117.	1.1	141
52	Identification and Biochemical Characterization of the Serine Biosynthetic Enzyme 3-Phosphoglycerate Dehydrogenase in Marchantia polymorpha. Frontiers in Plant Science, 2018, 9, 956.	1.7	9
53	Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha. Journal of Plant Research, 2018, 131, 849-864.	1.2	50
54	Cryopreservation of Marchantia polymorpha spermatozoa. Journal of Plant Research, 2018, 131, 1047-1054.	1.2	9

#	Article	IF	CITATIONS
55	Loss of CG methylation in Marchantia polymorpha causes disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant and Cell Physiology, 2018, 59, 2421-2431.	1.5	15
56	ANGUSTIFOLIA contributes to the regulation of three-dimensional morphogenesis in the liverwort Marchantia polymorpha. Development (Cambridge), 2018, 145, .	1.2	23
57	Evolutionary origin of phytochrome responses and signaling in land plants. Plant, Cell and Environment, 2017, 40, 2502-2508.	2.8	26
58	Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry, 2017, 136, 46-55.	1.4	56
59	Early evolution of the land plant circadian clock. New Phytologist, 2017, 216, 576-590.	3.5	100
60	Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha. Journal of Plant Research, 2017, 130, 433-441.	1.2	19
61	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	13.5	973
62	Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11962-11967.	3.3	76
63	The Roles of the Sole Activator-Type Auxin Response Factor in Pattern Formation of Marchantia polymorpha. Plant and Cell Physiology, 2017, 58, 1642-1651.	1.5	73
64	DRP3 and ELM1 are required for mitochondrial fission in the liverwort Marchantia polymorpha. Scientific Reports, 2017, 7, 4600.	1.6	18
65	Abscisic acidâ€induced gene expression in the liverwort <i>Marchantia polymorpha</i> is mediated by evolutionarily conserved promoter elements. Physiologia Plantarum, 2016, 156, 407-420.	2.6	20
66	An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Scientific Reports, 2016, 6, 39232.	1.6	42
67	RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10424-10429.	3.3	36
68	Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2016, 28, 1406-1421.	3.1	94
69	An Evolutionarily Conserved Plant RKD Factor Controls Germ Cell Differentiation. Current Biology, 2016, 26, 1775-1781.	1.8	109
70	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	1.5	60
71	Cryopreservation of Gemmae from the Liverwort <i>Marchantia polymorpha</i> L. Plant and Cell Physiology, 2016, 57, 300-306.	1.5	25
72	Identification of miRNAs and Their Targets in the Liverwort <i>Marchantia polymorpha</i> by Integrating RNA-Seq and Degradome Analyses. Plant and Cell Physiology, 2016, 57, 339-358.	1.5	70

#	Article	IF	CITATIONS
73	RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants. Current Biology, 2016, 26, 93-99.	1.8	129
74	Transcriptional Framework of Male Gametogenesis in the Liverwort <i>Marchantia polymorpha</i> L Plant and Cell Physiology, 2016, 57, 325-338.	1.5	83
75	<i>Marchantia</i> : Past, Present and Future. Plant and Cell Physiology, 2016, 57, 205-209.	1.5	45
76	Marchantia. Current Biology, 2016, 26, R186-R187.	1.8	16
77	Eukaryotic Components Remodeled Chloroplast Nucleoid Organization during the Green Plant Evolution. Genome Biology and Evolution, 2016, 8, 1-16.	1.1	25
78	Profiling and Characterization of Small RNAs in the Liverwort, <i>Marchantia polymorpha</i> , Belonging to the First Diverged Land Plants. Plant and Cell Physiology, 2016, 57, 359-372.	1.5	68
79	Molecular Genetic Tools and Techniques for <i>Marchantia polymorpha</i> Research. Plant and Cell Physiology, 2016, 57, 262-270.	1.5	195
80	SNARE Molecules in <i>Marchantia polymorpha</i> : Unique and Conserved Features of the Membrane Fusion Machinery. Plant and Cell Physiology, 2016, 57, 307-324.	1.5	82
81	Conditional Gene Expression/Deletion Systems forMarchantia polymorphaUsing its Own Heat-Shock Promoter and Cre/loxP-Mediated Site-Specific Recombination. Plant and Cell Physiology, 2016, 57, 271-280.	1.5	49
82	Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry, 2015, 116, 48-56.	1.4	64
83	Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2015, 27, 1650-1669.	3.1	138
84	Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta, 2015, 242, 1175-1186.	1.6	51
85	Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha. Phytochemistry, 2015, 117, 547-553.	1.4	23
86	Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genetics, 2015, 11, e1005084.	1.5	157
87	Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. Journal of Plant Research, 2015, 128, 407-421.	1.2	58
88	Stomatal Guard Cells Co-opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure. Current Biology, 2015, 25, 928-935.	1.8	154
89	Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS ONE, 2015, 10, e0138876.	1.1	231
90	Phototropin Encoded by a Single-Copy Gene Mediates Chloroplast Photorelocation Movements in the Liverwort <i>Marchantia polymorpha</i> ÂÂ. Plant Physiology, 2014, 166, 411-427.	2.3	63

#	Article	IF	CITATIONS
91	Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nature Communications, 2014, 5, 3668.	5.8	100
92	CRISPR/Cas9-Mediated Targeted Mutagenesis in the Liverwort Marchantia polymorpha L Plant and Cell Physiology, 2014, 55, 475-481.	1.5	262
93	FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 4039-4052.	3.1	50
94	Comparison of the MpEF11 \pm and CaMV35 promoters for application in Marchantia polymorpha overexpression studies. Transgenic Research, 2014, 23, 235-244.	1.3	93
95	Plastid Transformation of Sporelings and Suspension-Cultured Cells from the Liverwort Marchantia polymorpha L Methods in Molecular Biology, 2014, 1132, 439-447.	0.4	22
96	Coldâ€induced organelle relocation in the liverwort <i><scp>M</scp>archantia polymorpha</i> â€ <scp>L.</scp> . Plant, Cell and Environment, 2013, 36, 1520-1528.	2.8	47
97	Evolutionary insights into photoregulation of the cell cycle in the green lineage. Current Opinion in Plant Biology, 2013, 16, 630-637.	3.5	21
98	Essential Role of the E3 Ubiquitin Ligase NOPPERABO1 in Schizogenous Intercellular Space Formation in the Liverwort <i>Marchantia polymorpha</i> Â. Plant Cell, 2013, 25, 4075-4084.	3.1	50
99	Efficient <i>Agrobacterium</i> -Mediated Transformation of the Liverwort <i>Marchantia polymorpha</i> Using Regenerating Thalli. Bioscience, Biotechnology and Biochemistry, 2013, 77, 167-172.	0.6	247
100	Characterization of Four Nuclear-Encoded Plastid RNA Polymerase Sigma Factor Genes in the Liverwort Marchantia polymorpha: Blue-Light- and Multiple Stress-Responsive SIG5 was Acquired Early in the Emergence of Terrestrial Plants. Plant and Cell Physiology, 2013, 54, 1736-1748.	1.5	31
101	Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L Scientific Reports, 2013, 3, 1532.	1.6	119
102	Subfunctionalization of Sigma Factors during the Evolution of Land Plants Based on Mutant Analysis of Liverwort (Marchantia polymorpha L.) MpSIG1. Genome Biology and Evolution, 2013, 5, 1836-1848.	1.1	16
103	Characterization of the Plasma Membrane H+-ATPase in the Liverwort <i>Marchantia polymorpha</i> Â Â Â. Plant Physiology, 2012, 159, 826-834.	2.3	42
104	Composition and physiological function of the chloroplast NADH dehydrogenaseâ€like complex in <i>Marchantia polymorpha</i> . Plant Journal, 2012, 72, 683-693.	2.8	88
105	The Phytochrome-Interacting VASCULAR PLANT ONE–ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 3248-3263.	3.1	84
106	Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. Journal of Plant Research, 2012, 125, 643-651.	1.2	70
107	Evolutionarily Conserved Regulatory Mechanisms of Abscisic Acid Signaling in Land Plants: Characterization of <i>ABSCISIC ACID INSENSITIVE1</i> -Like Type 2C Protein Phosphatase in the Liverwort <i>Marchantia polymorpha</i> . Plant Physiology, 2010, 152, 1529-1543.	2.3	96
108	Application of Lifeact Reveals F-Actin Dynamics in Arabidopsis thaliana and the Liverwort, Marchantia polymorpha. Plant and Cell Physiology, 2009, 50, 1041-1048.	1.5	127

#	Article	IF	CITATIONS
109	Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Reports, 2008, 27, 1467-1473.	2.8	111
110	Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochemical and Photobiological Sciences, 2008, 7, 1253-1259.	1.6	54
111	Production of Arachidonic and Eicosapentaenoic Acids in Plants Using Bryophyte Fatty Acid Δ6-Desaturase, Δ6-Elongase, and Δ5-Desaturase Genes. Bioscience, Biotechnology and Biochemistry, 2008, 72, 435-444.	0.6	50
112	Agrobacterium-Mediated Transformation of the Haploid Liverwort Marchantia polymorpha L., an Emerging Model for Plant Biology. Plant and Cell Physiology, 2008, 49, 1084-1091.	1.5	310
113	Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6472-6477.	3.3	125
114	Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus Harbors Phycoviolobilin as a Chromophore. Plant and Cell Physiology, 2007, 48, 1385-1390.	1.5	99
115	Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Research, 2007, 16, 41-49.	1.3	47
116	Isolation and functional characterization of fatty acid Δ5-elongase gene from the liverwortMarchantia polymorphaL. FEBS Letters, 2006, 580, 149-154.	1.3	20
117	Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore inEscherichia coli. FEBS Letters, 2006, 580, 1333-1338.	1.3	112
118	The molecular basis of heme oxygenase deficiency in thepcd1mutant of pea. FEBS Journal, 2006, 273, 2594-2606.	2.2	36
119	The Tomato Photomorphogenetic Mutant, aurea, is Deficient in Phytochromobilin Synthase for Phytochrome Chromophore Biosynthesis. Plant and Cell Physiology, 2005, 46, 661-665.	1.5	31
120	Biosynthesis of chromophores for phytochrome and related photoreceptors. Plant Biotechnology, 2005, 22, 409-413.	0.5	9
121	The Elm1 (ZmHy2) Gene of Maize Encodes a Phytochromobilin Synthase. Plant Physiology, 2004, 136, 2771-2781.	2.3	44
122	Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin:ferredoxin oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1099-1104.	3.3	32
123	ArabidopsisZIM, a Plant-specific GATA Factor, Can Function as a Transcriptional Activator. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2495-2497.	0.6	27
124	An Arabidopsis MADS-Box Protein, AGL24, is Specifically Bound to and Phosphorylated by Meristematic Receptor-Like Kinase (MRLK). Plant and Cell Physiology, 2003, 44, 735-742.	1.5	37
125	Expression and Biochemical Properties of a Ferredoxin-Dependent Heme Oxygenase Required for Phytochrome Chromophore Synthesis. Plant Physiology, 2002, 130, 1958-1966.	2.3	152
126	The Arabidopsis HY2 Gene Encodes Phytochromobilin Synthase, a Ferredoxin-Dependent Biliverdin Reductase. Plant Cell, 2001, 13, 425-436.	3.1	269

#	Article	IF	CITATIONS
127	Functional Genomic Analysis of the HY2 Family of Ferredoxin-Dependent Bilin Reductases from Oxygenic Photosynthetic Organisms. Plant Cell, 2001, 13, 965-978.	3.1	232
128	The Arabidopsis Photomorphogenic Mutant hy1 Is Deficient in Phytochrome Chromophore Biosynthesis as a Result of a Mutation in a Plastid Heme Oxygenase. Plant Cell, 1999, 11, 335-347.	3.1	316
129	Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. Journal of Molecular Biology, 1992, 223, 1-7.	2.0	602
130	Structure and organization of Marchantia olymorpha chloroplast genome. Journal of Molecular Biology, 1988, 203, 353-372.	2.0	88
131	Splicing of group II introns in mRNAs coding for cytochrome b 6 and subunit IV in the liverwort Marchantia polymorpha chloroplast genome Exon specifying a region coding for two genes with the spacer region. FEBS Letters, 1987, 220, 61-66.	1.3	17
132	Coding sequences for chloroplast ribosomal protein S12 from the liverwort,Marchantia polymorpha, are separated far apart on the different DNA strands. FEBS Letters, 1986, 198, 11-15.	1.3	73
133	Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 1986, 322, 572-574.	13.7	1,552
134	The RopGEF KARAPPO is Essential for the Initiation of Vegetative Reproduction in Marchantia. SSRN Electronic Journal, 0, , .	0.4	0