List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/704278/publications.pdf Version: 2024-02-01

127	5,139	⁸⁷⁸⁸⁸ 38	98798 67
papers	citations	h-index	g-index
107	107	107	5262
137 all docs	137 docs citations	137 times ranked	5362 citing authors

MARC RAADEN

#	Article	IF	CITATIONS
1	Between Two Walls: Modeling the Adsorption Behavior of β-Glucosidase A on Bare and SAM-Functionalized Gold Surfaces. Langmuir, 2022, 38, 1313-1323.	3.5	2
2	Wielding the power of interactive molecular simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	14.6	5
3	Building Biological Relevance Into Integrative Modelling of Macromolecular Assemblies. Frontiers in Molecular Biosciences, 2022, 9, 826136.	3.5	2
4	Design – a new way to look at old molecules. Journal of Integrative Bioinformatics, 2022, 19, .	1.5	3
5	Hydroxy Channels–Adaptive Pathways for Selective Water Cluster Permeation. Journal of the American Chemical Society, 2021, 143, 4224-4233.	13.7	27
6	Mechanistic Insights on Heme-to-Heme Transmembrane Electron Transfer Within NADPH Oxydases From Atomistic Simulations. Frontiers in Chemistry, 2021, 9, 650651.	3.6	3
7	<i>UnityMol</i> prototype for FAIR sharing of molecular-visualization experiences: from pictures in the cloud to collaborative virtual reality exploration in immersive 3D environments. Acta Crystallographica Section D: Structural Biology, 2021, 77, 746-754.	2.3	13
8	Molecular dynamics simulations reveal statistics and microscopic mechanisms of water permeation in membrane-embedded artificial water channel nanoconstructs. Journal of Chemical Physics, 2021, 154, 184102.	3.0	5
9	Lessons learned from urgent computing in Europe: Tackling the COVID-19 pandemic. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
10	Characterization of β-turns by electronic circular dichroism spectroscopy: a coupled molecular dynamics and time-dependent density functional theory computational study. Physical Chemistry Chemical Physics, 2020, 22, 1611-1623.	2.8	19
11	Visualizing biomolecular electrostatics in virtual reality with UnityMolâ€APBS. Protein Science, 2020, 29, 237-246.	7.6	31
12	Implicit Modeling of the Impact of Adsorption on Solid Surfaces for Protein Mechanics and Activity with a Coarse-Grained Representation. Journal of Physical Chemistry B, 2020, 124, 8516-8523.	2.6	8
13	Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angewandte Chemie, 2020, 132, 23413-23419.	2.0	6
14	Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angewandte Chemie - International Edition, 2020, 59, 23213-23219.	13.8	32
15	Visualizing protein structures — tools and trends. Biochemical Society Transactions, 2020, 48, 499-506.	3.4	16
16	Computer Simulations Provide Guidance for Molecular Medicine Through Insights on Dynamics and Mechanisms at the Atomic Scale. IFMBE Proceedings, 2020, , 261-265.	0.3	0
17	Using Computer Simulations and Virtual Reality to Understand, Design and Optimize Artificial Water Channels. Lecture Notes in Bioengineering, 2020, , 78-99.	0.4	2
18	Physics-based oligomeric models of the yeast mitofusin Fzo1 at the molecular scale in the context of membrane docking. Mitochondrion, 2019, 49, 234-244.	3.4	12

#	Article	IF	CITATIONS
19	Structural dataset from microsecond-long simulations of yeast mitofusin Fzo1 in the context of membrane docking. Data in Brief, 2019, 26, 104460.	1.0	4
20	A Molecular Perspective on Mitochondrial Membrane Fusion: From the Key Players to Oligomerization and Tethering of Mitofusin. Journal of Membrane Biology, 2019, 252, 293-306.	2.1	12
21	Molecular Graphics: Bridging Structural Biologists and Computer Scientists. Structure, 2019, 27, 1617-1623.	3.3	42
22	Molecular modelling as the spark for active learning approaches for interdisciplinary biology teaching. Interface Focus, 2019, 9, 20180065.	3.0	11
23	Highlights from the Faraday Discussion on Artificial Water Channels, Glasgow, UK. Chemical Communications, 2019, 55, 3853-3858.	4.1	3
24	Visualizing Biological Membrane Organization and Dynamics. Journal of Molecular Biology, 2019, 431, 1889-1919.	4.2	18
25	Advancing Multi-Scale Simulation Methods for Biological Membrane Systems. Biophysical Journal, 2019, 116, 373a-374a.	0.5	0
26	Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics. Scientific Reports, 2019, 9, 16450.	3.3	22
27	Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26057-26065.	7.1	39
28	Holding the Nucleosome Together: A Quantitative Description of the DNA–Histone Interface in Solution. Journal of Chemical Theory and Computation, 2018, 14, 1045-1058.	5.3	16
29	Dystrophin's central domain forms a complex filament that becomes disorganized by in-frame deletions. Journal of Biological Chemistry, 2018, 293, 6637-6646.	3.4	19
30	Oriented chiral water wires in artificial transmembrane channels. Science Advances, 2018, 4, eaao5603.	10.3	69
31	Multi-scale simulations of biological systems using the OPEP coarse-grained model. Biochemical and Biophysical Research Communications, 2018, 498, 296-304.	2.1	26
32	Analyzing protein topology based on Laguerre tessellation of a pore-traversing water network. Scientific Reports, 2018, 8, 13540.	3.3	5
33	The modelling and enhancement of water hydrodynamics: general discussion. Faraday Discussions, 2018, 209, 273-285.	3.2	2
34	Structure and function of natural proteins for water transport: general discussion. Faraday Discussions, 2018, 209, 83-95.	3.2	4
35	Biomimetic water channels: general discussion. Faraday Discussions, 2018, 209, 205-229.	3.2	10
36	Applications to water transport systems: general discussion. Faraday Discussions, 2018, 209, 389-414.	3.2	4

#	Article	IF	CITATIONS
37	From Virtual Reality to Immersive Analytics in Bioinformatics. Journal of Integrative Bioinformatics, 2018, 15, .	1.5	23
38	MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis. Journal of Integrative Bioinformatics, 2018, 15, .	1.5	25
39	Controlling Redox Enzyme Orientation at Planar Electrodes. Catalysts, 2018, 8, 192.	3.5	78
40	Water permeation across artificial I-quartet membrane channels: from structure to disorder. Faraday Discussions, 2018, 209, 125-148.	3.2	29
41	Semantics for an Integrative and Immersive Pipeline Combining Visualization and Analysis of Molecular Data. Journal of Integrative Bioinformatics, 2018, 15, .	1.5	20
42	Ten simple rules to create a serious game, illustrated with examples from structural biology. PLoS Computational Biology, 2018, 14, e1005955.	3.2	20
43	The major \hat{l}^2 -catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. ELife, 2018, 7, .	6.0	62
44	Gating Pathways for a Pentameric Ligand-Gated Ion Channel Solved by Atomistic String Method Simulations. Biophysical Journal, 2017, 112, 475a.	0.5	1
45	Residues of Alpha Helix H3 Determine Distinctive Features of Transforming Growth Factor β3. Journal of Physical Chemistry B, 2017, 121, 5483-5498.	2.6	7
46	String method solution of the gating pathways for a pentameric ligand-gated ion channel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4158-E4167.	7.1	60
47	What Can Human-Guided Simulations Bring to RNA Folding?. Biophysical Journal, 2017, 113, 302-312.	0.5	8
48	Deciphering Anesthetic Action of Noble Gases through their Modulation of Membrane Protein and Lipid Bilayer Properties. Biophysical Journal, 2017, 112, 553a-554a.	0.5	0
49	A membrane-inserted structural model of the yeast mitofusin Fzo1. Scientific Reports, 2017, 7, 10217.	3.3	25
50	Visualization of Biomolecular Structures: State of the Art Revisited. Computer Graphics Forum, 2017, 36, 178-204.	3.0	69
51	Sites of Anesthetic Inhibitory Action on a Cationic Ligand-Gated Ion Channel. Structure, 2016, 24, 595-605.	3.3	35
52	Allosteric Gating Pathways for the Pentameric Ligand-Gated Ion ChannelÂGlic. Biophysical Journal, 2016, 110, 456a.	0.5	0
53	Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation. Journal of the American Chemical Society, 2016, 138, 5403-5409.	13.7	111
54	Visual Analysis of Biomolecular Cavities: State of the Art. Computer Graphics Forum, 2016, 35, 527-551.	3.0	46

#	Article	IF	CITATIONS
55	Interactive visual analytics of molecular data in immersive environments via a semantic definition of the content and the context. , 2016, , .		12
56	Mitochondrial Membrane Fusion: Computational Modeling of Mitofusins. Biophysical Journal, 2016, 110, 571a.	0.5	0
57	UnityMol: interactive and ludic visual manipulation of coarse-grained RNA and other biomolecules. , 2015, , .		7
58	Epock: rapid analysis of protein pocket dynamics. Bioinformatics, 2015, 31, 1478-1480.	4.1	81
59	Content and task based navigation for structural biology in 3D environments. , 2015, , .		4
60	Allosteric and hyperekplexic mutant phenotypes investigated on an α ₁ glycine receptor transmembrane structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2865-2870.	7.1	56
61	Taming molecular flexibility to tackle rare diseases. Biochimie, 2015, 113, 54-58.	2.6	13
62	Nothing to Sneeze at: A Full-Scale Computational Model of the Human Influenza Virion. Biophysical Journal, 2015, 108, 31a.	0.5	0
63	Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion. Structure, 2015, 23, 584-597.	3.3	90
64	Three-dimensional representations of complex carbohydrates and polysaccharidesSweetUnityMol: A video game-based computer graphic software. Glycobiology, 2015, 25, 483-491.	2.5	50
65	UnityMol: Interactive scientific visualization for integrative biology. , 2014, , .		20
66	Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from <i>Aquifex aeolicus</i> and <i>Desulfovibrio fructosovorans</i> . Journal of Physical Chemistry B, 2014, 118, 13800-13811.	2.6	26
67	Probing Pentameric Ligand-Gated Ion Channels with Bromoform Reveals Many Interconnected Anesthetic Binding Sites. Biophysical Journal, 2014, 106, 342a.	0.5	0
68	Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly. Faraday Discussions, 2014, 169, 45-62.	3.2	19
69	The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chemical Society Reviews, 2014, 43, 4871-4893.	38.1	147
70	ExaViz: a flexible framework to analyse, steer and interact with molecular dynamics simulations. Faraday Discussions, 2014, 169, 119-142.	3.2	11
71	Molecular simulations and visualization: introduction and overview. Faraday Discussions, 2014, 169, 9-22.	3.2	38
	Foundations of Biomolecular Simulations: A Critical Introduction to Homology Modeling, Molecular		

⁷² Dynamics Simulations, and Free Energy Calculations of Membrane Proteins. , 2014, , 347-392.

0

#	Article	IF	CITATIONS
73	The weak, fluctuating, dipole moment of membrane-bound hydrogenase from Aquifex aeolicus accounts for its adaptability to charged electrodes. Physical Chemistry Chemical Physics, 2014, 16, 11318-11322.	2.8	31
74	A Cooperative Mechanism of Clotrimazoles in P450 Revealed by the Dissociation Picture of Clotrimazole from P450. Journal of Chemical Information and Modeling, 2014, 54, 1218-1225.	5.4	6
75	The Dipolar Solvent Model and Its Applications to the Structural Analysis of Low-(SAXS) and High-(CRYSTALLOGRAPHY) Resolution X-Ray Data. Biophysical Journal, 2014, 106, 663a.	0.5	0
76	Game on, Science - How Video Game Technology may Help Biophysicists Tackle Visualization Challenges. Biophysical Journal, 2014, 106, 809a.	0.5	0
77	A Zoom on Membrane Fusion through Coarse-Grained, Atomistic and Hybrid Molecular Dynamics of SNARE Proteins. Biophysical Journal, 2013, 104, 32a.	0.5	1
78	Protein-Lipid Interactions in a Full-Scale Influenza a Virion: Insight into Flu Seasonality. Biophysical Journal, 2013, 104, 412a.	0.5	0
79	Study of the Interaction between General Anesthetics and a Bacterial Homologue to the Human Nicotinic Receptor. Biophysical Journal, 2013, 104, 623a.	0.5	0
80	Coarse-grain modelling of protein–protein interactions. Current Opinion in Structural Biology, 2013, 23, 878-886.	5.7	124
81	Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. EMBO Journal, 2013, 32, 728-741.	7.8	140
82	Molecular Modeling of Hydrogenase Enzymes for Biofuel Cell Design. Biophysical Journal, 2013, 104, 335a.	0.5	0
83	Structural Basis for Ion Permeation Mechanism in Pentameric Ligand-Gated Ion Channels. Biophysical Journal, 2013, 104, 67a.	0.5	0
84	Interactive Molecular Dynamics: Scaling up to Large Systems. Procedia Computer Science, 2013, 18, 20-29.	2.0	40
85	Understanding small biomoleculeâ€biomaterial interactions: A review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1210-1222.	4.0	54
86	Formation of Raft-Like Assemblies within Clusters of Influenza Hemagglutinin Observed by MD Simulations. PLoS Computational Biology, 2013, 9, e1003034.	3.2	53
87	Game On, Science - How Video Game Technology May Help Biologists Tackle Visualization Challenges. PLoS ONE, 2013, 8, e57990.	2.5	242
88	Modeling complex biological systems: From solution chemistry to membranes and channels. Pure and Applied Chemistry, 2012, 85, 1-13.	1.9	15
89	Mixing Atomistic and Coarse Grain Solvation Models for MD Simulations: Let WT4 Handle the Bulk. Journal of Chemical Theory and Computation, 2012, 8, 3880-3894.	5.3	43
90	A locally closed conformation of a bacterial pentameric proton-gated ion channel. Nature Structural and Molecular Biology, 2012, 19, 642-649.	8.2	135

#	Article	IF	CITATIONS
91	Advances in Human-Protein Interaction - Interactive and Immersive Molecular Simulations. , 2012, , .		23
92	Conformational Dynamics in a Nicotinic Receptor Homologue Probed by Simulations. Biophysical Journal, 2011, 100, 272a.	0.5	3
93	Enzyme Closure and Nucleotide Binding Structurally Lock Guanylate Kinase. Biophysical Journal, 2011, 101, 1440-1449.	0.5	16
94	X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature, 2011, 469, 428-431.	27.8	407
95	Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. Journal of Biomolecular NMR, 2011, 50, 191-195.	2.8	21
96	GPUâ€accelerated atom and dynamic bond visualization using hyperballs: A unified algorithm for balls, sticks, and hyperboloids. Journal of Computational Chemistry, 2011, 32, 2924-2935.	3.3	55
97	GPU-powered tools boost molecular visualization. Briefings in Bioinformatics, 2011, 12, 689-701.	6.5	37
98	Photocontrol of Protein Activity in Cultured Cells and Zebrafish with One―and Twoâ€Photon Illumination. ChemBioChem, 2010, 11, 653-663.	2.6	72
99	Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. Journal of Physiology, 2010, 588, 565-572.	2.9	102
100	One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6275-6280.	7.1	159
101	Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments. Nucleic Acids Research, 2010, 38, 6313-6323.	14.5	31
102	How Cations Can Assist DNase I in DNA Binding and Hydrolysis. PLoS Computational Biology, 2010, 6, e1001000.	3.2	60
103	Functional Modes and Residue Flexibility Control the Anisotropic Response of Guanylate Kinase to Mechanical Stress. Biophysical Journal, 2010, 99, 3412-3419.	0.5	22
104	The Molecular Recognition Mechanism for Superoxide Dismutase Presequence Binding to the Mitochondrial Protein Import Receptor Tom20 from <i>Oryza sativa</i> Involves an LRTLA Motif. Journal of Physical Chemistry B, 2010, 114, 13839-13846.	2.6	17
105	Coarseâ€Grain Simulations of the Râ€6NARE Fusion Protein in its Membrane Environment Detect Long‣ived Conformational Subâ€6tates. ChemPhysChem, 2009, 10, 1548-1552.	2.1	30
106	Complex molecular assemblies at hand via interactive simulations. Journal of Computational Chemistry, 2009, 30, 2375-2387.	3.3	39
107	X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature, 2009, 457, 111-114.	27.8	644
108	MULTI-RESOLUTION APPROACH FOR INTERACTIVELY LOCATING FUNCTIONALLY LINKED ION BINDING SITES BY STEERING SMALL MOLECULES INTO ELECTROSTATIC POTENTIAL MAPS USING A HAPTIC DEVICE. , 2009, , 205-215.		4

#	Article	IF	CITATIONS
109	Outer membrane proteins: comparing X-ray and NMR structures by MD simulations in lipid bilayers. European Biophysics Journal, 2008, 37, 131-141.	2.2	22
110	Microseconds Dynamics Simulations of the Outer-Membrane Protease T. Biophysical Journal, 2008, 94, 71-78.	0.5	43
111	Interactions between Neuronal Fusion Proteins Explored by Molecular Dynamics. Biophysical Journal, 2008, 94, 3436-3446.	0.5	26
112	A VR framework for interacting with molecular simulations. , 2008, , .		13
113	Three hydrolases and a transferase: Comparative analysis of active-site dynamics via the BioSimGrid database. Journal of Molecular Graphics and Modelling, 2007, 25, 896-902.	2.4	7
114	Membrane protein structure quality in molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 2005, 24, 157-165.	2.4	58
115	Conformational sampling and dynamics of membrane proteins from 10-nanosecond computer simulations. Proteins: Structure, Function and Bioinformatics, 2004, 57, 783-791.	2.6	92
116	OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme. Biophysical Journal, 2004, 87, 2942-2953.	0.5	49
117	Extending the Structure of an ABC Transporter to Atomic Resolution:  Modeling and Simulation Studies of MsbA. Biochemistry, 2003, 42, 3666-3673.	2.5	56
118	A Molecular Dynamics Investigation of Mono and Dimeric States of the Outer Membrane Enzyme OMPLA. Journal of Molecular Biology, 2003, 331, 177-189.	4.2	42
119	Theoretical Studies on Lanthanide Cation Extraction by Picolinamides: Ligand–Cation Interactions and Interfacial Behavior. Solvent Extraction and Ion Exchange, 2003, 21, 199-220.	2.0	15
120	Molecular Dynamics Study of the Uranyl Extraction by Tri-n-butylphosphate (TBP):Â Demixing of Water/"Oilâ€fTBP Solutions with a Comparison of Supercritical CO2and Chloroform. Journal of Physical Chemistry B, 2002, 106, 434-441.	2.6	80
121	The chloroform / TBP / aqueous nitric acid interfacial system: a molecular dynamics investigation. Journal of Molecular Liquids, 2001, 90, 1-9.	4.9	34
122	TBP at the Waterâ^'Oil Interface:  The Effect of TBP Concentration and Water Acidity Investigated by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2001, 105, 11131-11141.	2.6	122
123	Lanthanide cation binding to a phosphoryl-calix[4]arene: the importance of solvent and counterions investigated by molecular dynamics and quantum mechanical simulations. Physical Chemistry Chemical Physics, 2001, 3, 1317-1325.	2.8	31
124	Calix[4]arenes as Selective Extracting Agents. An NMR Dynamic and Conformational Investigation of the Lanthanide(III) and Thorium(IV) Complexes. Inorganic Chemistry, 2000, 39, 2033-2041.	4.0	47
125	M3+Lanthanide Cation Solvation by Acetonitrile:Â The Role of Cation Size, Counterions, and Polarization Effects Investigated by Molecular Dynamics and Quantum Mechanical Simulations. Journal of Physical Chemistry A, 2000, 104, 7659-7671.	2.5	69
126	Cation coordination by calix[4]arenes bearing amide and/or phosphine oxide pendant groups: how many arms are needed to bind Li+ vs. Na+? A combined NMR and molecular dynamics study. Perkin Transactions II RSC, 2000, , 1315-1322.	1.1	14

#	Article	IF	CITATIONS
127	The never-ending quest to understand the shapes and motions of molecules. Biochemist, 0, , .	0.5	0