
James T Mckenna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7042059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of Sleep and Wakefulness. Physiological Reviews, 2012, 92, 1087-1187.	28.8	1,089
2	Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3535-3540.	7.1	246
3	Afferent projections to nucleus reuniens of the thalamus. Journal of Comparative Neurology, 2004, 480, 115-142.	1.6	211
4	Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. European Journal of Neuroscience, 2006, 23, 2739-2748.	2.6	185
5	Functions and Mechanisms of Sleep. AIMS Neuroscience, 2016, 3, 67-104.	2.3	153
6	Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. Journal of Neuroscience, 2016, 36, 2057-2067.	3.6	106
7	Sleep fragmentation elevates behavioral, electrographic and neurochemical measures of sleepiness. Neuroscience, 2007, 146, 1462-1473.	2.3	103
8	Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Frontiers in Neurology, 2015, 6, 135.	2.4	82
9	Characterization of GABAergic neurons in rapidâ€eyeâ€movement sleep controlling regions of the brainstem reticular formation in GAD67–green fluorescent protein knockâ€in mice. European Journal of Neuroscience, 2008, 27, 352-363.	2.6	81
10	Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons. Journal of Neuroscience, 2014, 34, 2832-2844.	3.6	80
11	Collateral projections from the supramammillary nucleus to the medial septum and hippocampus. Synapse, 2000, 38, 281-293.	1.2	79
12	Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. Journal of Comparative Neurology, 2013, 521, 1225-1250.	1.6	79
13	Experimental Sleep Fragmentation Impairs Attentional Set-Shifting in Rats. Sleep, 2007, 30, 52-60.	1.1	70
14	Differential effect of orexins (hypocretins) on serotonin release in the dorsal and median raphe nuclei of freely behaving rats. Neuroscience, 2006, 141, 1101-1105.	2.3	67
15	Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Research Bulletin, 2001, 54, 619-630.	3.0	63
16	Spatial learning and memory deficits following exposure to 24Âh of sleep fragmentation or intermittent hypoxia in a rat model of obstructive sleep apnea. Brain Research, 2009, 1294, 128-137.	2.2	62
17	Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience, 2011, 199, 51-63.	2.3	57
18	24 hours of sleep deprivation in the rat increases sleepiness and decreases vigilance: introduction of the ratâ€psychomotor vigilance task. Journal of Sleep Research, 2008, 17, 376-384.	3.2	54

JAMES T MCKENNA

#	Article	IF	CITATIONS
19	Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Scientific Reports, 2019, 9, 3607.	3.3	46
20	Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. European Journal of Neuroscience, 2010, 32, 1528-1536.	2.6	44
21	Validation of an automated sleep spindle detection method for mouse electroencephalography. Sleep, 2019, 42, .	1.1	40
22	Sleep fragmentation reduces hippocampal CA1 pyramidal cell excitability and response to adenosine. Neuroscience Letters, 2010, 469, 1-5.	2.1	35
23	Basal Forebrain Parvalbumin Neurons Mediate Arousals from Sleep Induced by Hypercarbia or Auditory Stimuli. Current Biology, 2020, 30, 2379-2385.e4.	3.9	35
24	Microdialysis elevation of adenosine in the basal forebrain produces vigilance impairments in the rat psychomotor vigilance task. Sleep, 2008, 31, 1393-8.	1.1	33
25	Another Chapter in the Adenosine Story. Sleep, 2006, 29, 426-428.	1.1	31
26	Animal Models of Narcolepsy. CNS and Neurological Disorders - Drug Targets, 2009, 8, 296-308.	1.4	28
27	Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Molecular Psychiatry, 2021, 26, 3461-3475.	7.9	26
28	Effects on serotonin of (â^')nicotine and dimethylphenylpiperazinium in the dorsal raphe and nucleus accumbens of freely behaving rats. Neuroscience, 2005, 135, 949-958.	2.3	25
29	One week of exposure to intermittent hypoxia impairs attentional set-shifting in rats. Behavioural Brain Research, 2010, 210, 123-126.	2.2	25
30	Assessing sleepiness in the rat: a multiple sleep latencies test compared to polysomnographic measures of sleepiness. Journal of Sleep Research, 2008, 17, 365-375.	3.2	23
31	c-Fos protein expression is increased in cholinergic neurons of the rodent basal forebrain during spontaneous and induced wakefulness. Brain Research Bulletin, 2009, 80, 382-388.	3.0	22
32	Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Structure and Function, 2019, 224, 1505-1518.	2.3	22
33	Somatostatin+/nNOS+ neurons are involved in delta electroencephalogram activity and cortical-dependent recognition memory. Sleep, 2019, 42, .	1.1	17
34	GAD67-GFP knock-in mice have normal sleep–wake patterns and sleep homeostasis. NeuroReport, 2010, 21, 216-220.	1.2	15
35	Chronic ramelteon treatment in a mouse model of Alzheimer's disease. Archives Italiennes De Biologie, 2012, 150, 5-14.	0.4	15
36	Microdialysis Elevation of Adenosine in the Basal Forebrain Produces Vigilance Impairments in the Rat Psychomotor Vigilance Task. Sleep, 2008, , .	1.1	14

JAMES T MCKENNA

#	Article	IF	CITATIONS
37	Knockdown of GABAA alpha3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nature Communications, 2022, 13, 2246.	12.8	14
38	A rodent cage change insomnia model disrupts memory consolidation. Journal of Sleep Research, 2019, 28, e12792.	3.2	13
39	Knockdown of orexin type 2 receptor in the lateral pontomesencephalic tegmentum of rats increases <scp>REM</scp> sleep. European Journal of Neuroscience, 2013, 37, 957-963.	2.6	11
40	The dual orexinergic receptor antagonist DORA-22 improves the sleep disruption and memory impairment produced by a rodent insomnia model. Sleep, 2020, 43, .	1.1	11
41	Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience, 2017, 352, 249-261.	2.3	10
42	Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Structure and Function, 2021, 226, 1755-1778.	2.3	10
43	Activation of basal forebrain purinergic P2 receptors promotes wakefulness in mice. Scientific Reports, 2018, 8, 10730.	3.3	8
44	Neurobiology of REM Sleep, NREM Sleep Homeostasis, and Gamma Band Oscillations. , 2017, , 55-77.		7
45	Pharmacology of Sleep: Adenosine. , 2009, , 601-610.		5
46	The Dual Orexin Receptor Antagonist DORA-22 Improves Mild Stress-induced Sleep Disruption During the Natural Sleep Phase of Nocturnal Rats. Neuroscience, 2021, 463, 30-44.	2.3	3
47	Neurochemistry of wakefulness and sleep. , 2012, , 23-42.		2
48	0021 SLEEP DEPRIVATION ACTIVATES NLRP3 INFLAMMASOMES IN NEURONS AND GLIA. Sleep, 2017, 40, A8-A8.	1.1	2
49	0043 INVESTIGATION OF THE DEVELOPMENTAL ORIGIN OF FOREBRAIN GABAERGIC NEURONS INVOLVED IN SLEEP-WAKE CONTROL USING AÂFATE-MAPPING APPROACH. Sleep, 2017, 40, A17-A17.	1.1	2
50	Neuroanatomy and neurobiology of sleep and wakefulness. , 0, , 13-35.		2
51	Neuronal models of REM-sleep control: evolving concepts. , 0, , 285-300.		0
52	Aberrant cortical neuroplasticity in the <scp>OSA</scp> patient (Commentary on Opie <i>et al</i> .). European Journal of Neuroscience, 2013, 37, 1843-1843.	2.6	0
53	0129 LOCAL THALAMIC RETICULAR NUCLEUS INHIBITION OF T-TYPE CALCIUM CHANNELS REDUCES SLEEP SPINDLES IN MICE. Sleep, 2017, 40, A48-A48.	1.1	0
54	0098 BASAL FOREBRAIN PARVALBUMIN NEURONS CONTROL THALAMIC RETICULAR NEURONS: AN OPTOGENETIC STUDY INVESTIGATING SPINDLES AND NREM SLEEP REGULATION. Sleep, 2017, 40, A37-A37.	1.1	0

JAMES T MCKENNA

#	Article	IF	CITATIONS
55	0099 INFUSION OF AÂPURINERGIC P2 RECEPTOR AGONIST INTO THE BASAL FOREBRAIN BY REVERSE MICRODIALYSIS ATTENUATES HOMEOSTATIC SLEEP REBOUND. Sleep, 2017, 40, A37-A37.	1.1	0
56	0254 INSOMNIA-RELATED SLEEP DISRUPTION IMPAIRS SLEEP-DEPENDENT MEMORY CONSOLIDATION IN THE RAT. Sleep, 2017, 40, A93-A93.	1.1	0
57	0028 GABAA Receptors Of The Thalamic Reticular Nucleus Regulate Sleep Spindles: An In Vivo Investigation By CRISPR-cas9 Genetic Abscission. Sleep, 2018, 41, A12-A12.	1.1	0
58	0094 Hypnotic Effectiveness Of The Dual Orexin Receptor Antagonist DORA-22, Evaluated With A Rodent Cage-Change Model Of Insomnia. Sleep, 2018, 41, A38-A38.	1.1	0
59	0093 Orexin Receptor Antagonism Improves Stress-related Insomnia, "Next Day―Hypersomnia, And Sleep Dependent Memory Consolidation In The Rat. Sleep, 2019, 42, A38-A38.	1.1	0
60	Introduction to basic science. , 2017, , .		0
61	Partnerships in Neuroscience Research Between Small Colleges and Large Institutions: A Case Study. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2018, 16, A159-A167.	0.0	0