Jeffrey P Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7040852/publications.pdf

Version: 2024-02-01

27 papers 4,558 citations

430874 18 h-index 27 g-index

28 all docs 28 docs citations

times ranked

28

10343 citing authors

#	Article	IF	CITATIONS
1	Phase 1/dose expansion trial of brentuximab vedotin andÂlenalidomide in relapsed or refractory diffuse large B-cell lymphoma. Blood, 2022, 139, 1999-2010.	1.4	17
2	Exploring the Feasibility of Utilizing Limited Gene Panel Circulating Tumor DNA Clearance as a Biomarker in Patients With Locally Advanced Non-Small Cell Lung Cancer. Frontiers in Oncology, 2022, 12, 856132.	2.8	2
3	BHLHE40 Regulates the T-Cell Effector Function Required for Tumor Microenvironment Remodeling and Immune Checkpoint Therapy Efficacy. Cancer Immunology Research, 2022, 10, 597-611.	3.4	16
4	Cause of death among patients with non-small cell lung cancer treated with postoperative radiation therapy (PORT) Journal of Clinical Oncology, 2021, 39, e20555-e20555.	1.6	1
5	<i>Scl6</i> -Independent In Vivo Development of Functional Type 1 Classical Dendritic Cells Supporting Tumor Rejection. Journal of Immunology, 2021, 207, 125-132.	0.8	4
6	Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
7	Genomic Profiling of Lung Adenocarcinoma in Never-Smokers. Journal of Clinical Oncology, 2021, 39, 3747-3758.	1.6	38
8	Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020, 183, 818-834.e13.	28.9	287
9	cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature, 2020, 584, 624-629.	27.8	298
10	Circulating Tumor DNA Profiling in Small-Cell Lung Cancer Identifies Potentially Targetable Alterations. Clinical Cancer Research, 2019, 25, 6119-6126.	7.0	28
11	MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature, 2019, 574, 696-701.	27.8	563
12	Role of immune checkpoint blockers in patients with EGFR mutation. Translational Lung Cancer Research, 2018, 7, S385-S387.	2.8	2
13	High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell, 2018, 175, 1014-1030.e19.	28.9	292
14	Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape. Cancer Immunology Research, 2017, 5, 106-117.	3.4	236
15	Endogenous Neoantigen-Specific CD8 T Cells Identified in Two Glioblastoma Models Using a Cancer Immunogenomics Approach. Cancer Immunology Research, 2016, 4, 1007-1015.	3.4	84
16	143â€fIdentification of Neoantigen-specific CD8+ T Cells in Two Murine Orthotopic Glioblastoma Models Using Cancer Immunogenomics. Neurosurgery, 2016, 63, 158.	1.1	2
17	The Role of Neoantigens in Naturally Occurring and Therapeutically Induced Immune Responses to Cancer. Advances in Immunology, 2016, 130, 25-74.	2.2	181
18	Understanding the molecular manipulation of DCAF1 by the lentiviral accessory proteins Vpr and Vpx. Virology, 2015, 476, 19-25.	2.4	9

#	Article	IF	CITATIONS
19	Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515, 577-581.	27.8	1,705
20	Preparation and Use of HIV-1 Infected Primary CD4+ T-Cells as Target Cells in Natural Killer Cell Cytotoxic Assays. Journal of Visualized Experiments, $2011, , .$	0.3	11
21	Degranulation of Natural Killer Cells Following Interaction with HIV-1-Infected Cells Is Hindered by Downmodulation of NTB-A by Vpu. Cell Host and Microbe, 2010, 8, 397-409.	11.0	172
22	HIV-1 Vpr Triggers Natural Killer Cell–Mediated Lysis of Infected Cells through Activation of the ATR-Mediated DNA Damage Response. PLoS Pathogens, 2009, 5, e1000613.	4.7	110
23	Role of natural killer cells in HIV pathogenesis. Current HIV/AIDS Reports, 2008, 5, 44-50.	3.1	12
24	Lysis of Endogenously Infected CD4+ T Cell Blasts by rIL-2 Activated Autologous Natural Killer Cells from HIV-Infected Viremic Individuals. PLoS Pathogens, 2008, 4, e1000101.	4.7	88
25	HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood, 2007, 110, 1207-1214.	1.4	158
26	Regulation of CD4 Expression via Recycling by HRES-1/RAB4 Controls Susceptibility to HIV Infection. Journal of Biological Chemistry, 2006, 281, 34574-34591.	3.4	58
27	HLA-C and HLA-E reduce antibody-dependent natural killer cell-mediated cytotoxicity of HIV-infected primary T cell blasts. Aids, 2004, 18, 1769-1779.	2.2	57