Charles F Zorumski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7039233/publications.pdf

Version: 2024-02-01

53794 8,865 138 45 citations h-index papers

g-index 142 142 142 7171 docs citations times ranked citing authors all docs

46799

89

#	Article	IF	CITATIONS
1	Physiological markers of rapid antidepressant effects of allopregnanolone. Journal of Neuroendocrinology, 2022, 34, e13023.	2.6	5
2	Opportunities for Drug Repurposing of Serotonin Reuptake Inhibitors: Potential Uses in Inflammation, Infection, Cancer, Neuroprotection, and Alzheimer's Disease Prevention. Pharmacopsychiatry, 2022, 55, 24-29.	3.3	14
3	The Enantiomer of Allopregnanolone Prevents Pressure-Mediated Retinal Degeneration Via Autophagy. Frontiers in Pharmacology, 2022, 13, 855779.	3.5	8
4	Nitrous Oxide, a Rapid Antidepressant, Has Ketamine-like Effects on Excitatory Transmission in the Adult Hippocampus. Biological Psychiatry, 2022, 92, 964-972.	1.3	12
5	The neurosteroid allopregnanolone protects retinal neurons by effects on autophagy and GABRs/GABA _A receptors in rat glaucoma models. Autophagy, 2021, 17, 743-760.	9.1	28
6	A neuroactive steroid with a therapeutically interesting constellation of actions at GABAA and NMDA receptors. Neuropharmacology, 2021, 183, 108358.	4.1	6
7	Academic Psychiatry Department Names: Reflections on Research, Practice, and Education. Academic Psychiatry, 2021, 45, 164-168.	0.9	2
8	Oxysterols Modulate the Acute Effects of Ethanol on Hippocampal <i>N</i> -Methyl-d-Aspartate Receptors, Long-Term Potentiation, and Learning. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 181-188.	2.5	7
9	Ethanol, neurosteroids and cellular stress responses: Impact on central nervous system toxicity, inflammation and autophagy. Neuroscience and Biobehavioral Reviews, 2021, 124, 168-178.	6.1	12
10	A phase 2 trial of inhaled nitrous oxide for treatment-resistant major depression. Science Translational Medicine, 2021, 13 , .	12.4	52
11	Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Biological Psychiatry, 2021, 90, 766-780.	1.3	10
12	A Proinflammatory Stimulus Disrupts Hippocampal Plasticity and Learning via Microglial Activation and 25-Hydroxycholesterol. Journal of Neuroscience, 2021, 41, 10054-10064.	3.6	27
13	Effects of CYP46A1 Inhibition on Long-Term-Depression in Hippocampal Slices ex vivo and 24S-Hydroxycholesterol Levels in Mice in vivo. Frontiers in Molecular Neuroscience, 2020, 13, 568641.	2.9	12
14	Lack of Neurosteroid Selectivity at $\hat{\Gamma}$ vs. $\hat{\Gamma}^3$ 2-Containing GABAA Receptors in Dentate Granule Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 6.	2.9	12
15	Ketamine and nitrous oxide: The evolution of NMDA receptor antagonists as antidepressant agents. Journal of the Neurological Sciences, 2020, 412, 116778.	0.6	46
16	Inhibitors of cellular stress overcome acute effects of ethanol on hippocampal plasticity and learning. Neurobiology of Disease, 2020, 141, 104875.	4.4	11
17	"What Were You Before the War?―Repurposing Psychiatry During the COVID-19 Pandemic. Journal of Clinical Psychiatry, 2020, 81, .	2.2	31
18	Mild chronic perturbation of inhibition severely alters hippocampal function. Scientific Reports, 2019, 9, 16431.	3.3	4

#	Article	IF	CITATIONS
19	Trial of SAGE-217 in Patients with Major Depressive Disorder. New England Journal of Medicine, 2019, 381, 903-911.	27.0	156
20	Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiology of Stress, 2019, 11, 100196.	4.0	249
21	Temperoammonic Stimulation Depotentiates Schaffer Collateral LTP via p38 MAPK Downstream of Adenosine A1 Receptors. Journal of Neuroscience, 2019, 39, 1783-1792.	3.6	5
22	Novel neurosteroid hypnotic blocks T-type calcium channel-dependent rebound burst firing and suppresses long-term potentiation in the rat subiculum. British Journal of Anaesthesia, 2019, 122, 643-651.	3.4	12
23	Visualizing pregnenolone sulfate-like modulators of NMDA receptor function reveals intracellular and plasma-membrane localization. Neuropharmacology, 2019, 144, 91-103.	4.1	9
24	Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment. Neurobiology of Learning and Memory, 2019, 165, 106834.	1.9	17
25	Positive Allosteric Modulation as a Potential Therapeutic Strategy in Anti-NMDA Receptor Encephalitis. Journal of Neuroscience, 2018, 38, 3218-3229.	3.6	39
26	Exploring Nitrous Oxide as Treatment of Mood Disorders. Journal of Clinical Psychopharmacology, 2018, 38, 144-148.	1.4	28
27	A Clickable Oxysterol Photolabel Retains NMDA Receptor Activity and Accumulates in Neurons. Frontiers in Neuroscience, 2018, 12, 923.	2.8	4
28	Additive neuroprotective effects of 24(S)-hydroxycholesterol and allopregnanolone in an ex vivo rat glaucoma model. Scientific Reports, 2018, 8, 12851.	3.3	4
29	Chemogenetic Isolation Reveals Synaptic Contribution of δGABA _A Receptors in Mouse Dentate Granule Neurons. Journal of Neuroscience, 2018, 38, 8128-8145.	3.6	21
30	Neurosteroids and Oxysterols as Potential Therapeutic Agents for Glaucoma and Alzheimer's Disease. Neuropsychiatry, 2018, 08, 344-359.	0.4	15
31	Use of Ketamine in Clinical Practice. JAMA Psychiatry, 2017, 74, 405.	11.0	11
32	Contributions of space-clamp errors to apparent time-dependent loss of Mg ²⁺ block induced by NMDA. Journal of Neurophysiology, 2017, 118, 532-543.	1.8	0
33	The role of Tâ€ŧype calcium channels in the subiculum: to burst or not to burst?. Journal of Physiology, 2017, 595, 6327-6348.	2.9	29
34	24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampal neuronal survival following oxygen-glucose deprivation. PLoS ONE, 2017, 12, e0174416.	2.5	29
35	Neuregulin and Dopamine D4 Receptors Contribute Independently to Depotentiation of Schaffer Collateral LTP by Temperoammonic Path Stimulation. ENeuro, 2017, 4, ENEURO.0176-17.2017.	1.9	6
36	Dissection method affects electrophysiological properties of hippocampal slices., 2017, 3, 94-101.		0

3

#	Article	IF	CITATIONS
37	GABA and Endocannabinoids Mediate Depotentiation of Schaffer Collateral Synapses Induced by Stimulation of Temperoammonic Inputs. PLoS ONE, 2016, 11, e0149034.	2.5	13
38	24(S)-Hydroxycholesterol protects the ex vivo rat retina from injury by elevated hydrostatic pressure. Scientific Reports, 2016, 6, 33886.	3.3	20
39	Endogenous 24 <i>S</i> -hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. Journal of Neurophysiology, 2016, 115, 1263-1272.	1.8	53
40	A Clickable Analogue of Ketamine Retains NMDA Receptor Activity, Psychoactivity, and Accumulates in Neurons. Scientific Reports, 2016, 6, 38808.	3.3	13
41	Ketamine: NMDA Receptors and Beyond. Journal of Neuroscience, 2016, 36, 11158-11164.	3.6	147
42	TSPO activation modulates the effects of high pressure in a rat exÂvivo glaucoma model. Neuropharmacology, 2016, 111, 142-159.	4.1	18
43	A clickable neurosteroid photolabel reveals selective Golgi compartmentalization with preferential impact on proximal inhibition. Neuropharmacology, 2016, 108, 193-206.	4.1	19
44	Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats. Neuroscience, 2016, 329, 294-305.	2.3	49
45	24(S)-Hydroxycholesterol as a Modulator of Neuronal Signaling and Survival. Neuroscientist, 2016, 22, 132-144.	3.5	75
46	Corticosterone enhances the potency of ethanol against hippocampal long-term potentiation via local neurosteroid synthesis. Frontiers in Cellular Neuroscience, 2015, 9, 254.	3.7	10
47	Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy. Frontiers in Psychiatry, 2015, 6, 172.	2.6	43
48	Experimentally Induced Mammalian Models of Glaucoma. BioMed Research International, 2015, 2015, 1-11.	1.9	45
49	Sensitivity of N-Methyl-d-Aspartate Receptor–Mediated Excitatory Postsynaptic Potentials and Synaptic Plasticity to TCN 201 and TCN 213 in Rat Hippocampal Slices. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 267-273.	2.5	7
50	Quantification of bursting and synchrony in cultured hippocampal neurons. Journal of Neurophysiology, 2015, 114, 1059-1071.	1.8	29
51	Nampt is required for long-term depression and the function of GluN2B subunit-containing NMDA receptors. Brain Research Bulletin, 2015, 119, 41-51.	3.0	10
52	Nitrous Oxide for Treatment-Resistant Major Depression: A Proof-of-Concept Trial. Biological Psychiatry, 2015, 78, 10-18.	1.3	168
53	Interaction between positive allosteric modulators and trapping blockers of the <scp>NMDA</scp> receptor channel. British Journal of Pharmacology, 2015, 172, 1333-1347.	5.4	29
54	Neurosteroids Are Endogenous Neuroprotectants in an Ex Vivo Glaucoma Model. Investigative Ophthalmology and Visual Science, 2014, 55, 8531-8541.	3.3	35

#	Article	IF	CITATIONS
55	Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol, 2014, 48, 1-17.	1.7	135
56	Expression of Nampt in Hippocampal and Cortical Excitatory Neurons Is Critical for Cognitive Function. Journal of Neuroscience, 2014, 34, 5800-5815.	3.6	50
57	Neurosteroid Analogues. 18. Structure–Activity Studies of <i>ent</i> -Steroid Potentiators of γ-Aminobutyric Acid Type A Receptors and Comparison of Their Activities with Those of Alphaxalone and Allopregnanolone. Journal of Medicinal Chemistry, 2014, 57, 171-190.	6.4	28
58	Metaplastic effects of subanesthetic ketamine on CA1 hippocampal function. Neuropharmacology, 2014, 86, 273-281.	4.1	46
59	Different oxysterols have opposing actions at N-methyl-d-aspartate receptors. Neuropharmacology, 2014, 85, 232-242.	4.1	69
60	The Major Brain Cholesterol Metabolite 24(S)-Hydroxycholesterol Is a Potent Allosteric Modulator of <i>N</i> -Methyl-d-Aspartate Receptors. Journal of Neuroscience, 2013, 33, 17290-17300.	3.6	204
61	Indistinguishable Synaptic Pharmacodynamics of the <i>N</i> -Methyl-d-Aspartate Receptor Channel Blockers Memantine and Ketamine. Molecular Pharmacology, 2013, 84, 935-947.	2.3	55
62	Metaplastic LTP inhibition after LTD induction in CA1 hippocampal slices involves NMDA Receptor-mediated Neurosteroidogenesis. Physiological Reports, 2013, 1, e00133.	1.7	18
63	Neurosteroids, stress and depression: Potential therapeutic opportunities. Neuroscience and Biobehavioral Reviews, 2013, 37, 109-122.	6.1	158
64	Locally-generated acetaldehyde is involved in ethanol-mediated LTP inhibition in the hippocampus. Neuroscience Letters, 2013, 537, 40-43.	2.1	14
65	Neurosteroids as Therapeutic Leads in Psychiatry. JAMA Psychiatry, 2013, 70, 659.	11.0	20
66	Locally-generated acetaldehyde contributes to the effects of ethanol on neurosteroids and long-term potentiation in the hippocampus. Neurology and Clinical Neuroscience, 2013, 1, 138-147.	0.4	14
67	Cross talk between synaptic receptors mediates NMDA-induced suppression of inhibition. Journal of Neurophysiology, 2012, 107, 2532-2540.	1.8	7
68	Characteristics of concatemeric GABA _A receptors containing $\hat{l}\pm 4/\hat{l}$ subunits expressed in <i>Xenopus</i> oocytes. British Journal of Pharmacology, 2012, 165, 2228-2243.	5.4	43
69	NMDA Receptors, mGluR5, and Endocannabinoids are Involved in a Cascade Leading to Hippocampal Long-Term Depression. Neuropsychopharmacology, 2012, 37, 609-617.	5.4	51
70	Neurosteroid Analogues. 17. Inverted Binding Orientations of Androsterone Enantiomers at the Steroid Potentiation Site on \hat{I}^3 -Aminobutyric Acid Type A Receptors. Journal of Medicinal Chemistry, 2012, 55, 1334-1345.	6.4	20
71	NMDA receptors and metaplasticity: Mechanisms and possible roles in neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 2012, 36, 989-1000.	6.1	108
72	Downregulation of Glutamine Synthetase via GLAST Suppression Induces Retinal Axonal Swelling in a Rat Ex Vivo Hydrostatic Pressure Model., 2011, 52, 6604.		33

#	Article	IF	CITATIONS
73	Ethanol Enhances Neurosteroidogenesis in Hippocampal Pyramidal Neurons by Paradoxical NMDA Receptor Activation. Journal of Neuroscience, 2011, 31, 9905-9909.	3.6	66
74	Kinetic and Structural Determinants for GABA-A Receptor Potentiation by Neuroactive Steroids. Current Neuropharmacology, 2010, 8, 18-25.	2.9	21
75	Midazolam Inhibits Hippocampal Long-Term Potentiation and Learning through Dual Central and Peripheral Benzodiazepine Receptor Activation and Neurosteroidogenesis. Journal of Neuroscience, 2010, 30, 16788-16795.	3.6	87
76	Effects of Acutely Elevated Hydrostatic Pressure in a Rat Ex Vivo Retinal Preparation., 2010, 51, 6414.		27
77	A Synthetic 18-Norsteroid Distinguishes between Two Neuroactive Steroid Binding Sites on GABA _A Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 404-413.	2.5	22
78	Neuroprotective effects of pyruvate following NMDA-mediated excitotoxic insults in hippocampal slices. Neuroscience Letters, 2010, 478, 131-135.	2.1	26
79	The sticky issue of neurosteroids and GABAA receptors. Trends in Neurosciences, 2010, 33, 299-306.	8.6	89
80	The Influence of Neuroactive Steroid Lipophilicity on GABA _A Receptor Modulation: Evidence for a Low-Affinity Interaction. Journal of Neurophysiology, 2009, 102, 1254-1264.	1.8	56
81	Longâ€term potentiation inhibition by lowâ€level <i>N</i> àâ€methylâ€ <scp>D</scp> â€aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogenâ€activated protein kinase. Hippocampus, 2008, 18, 258-265.	1.9	63
82	Neurosteroid analogues. 12. Potent enhancement of GABA-mediated chloride currents at GABAA receptors by ent-androgens. European Journal of Medicinal Chemistry, 2008, 43, 107-113.	5.5	30
83	Neurosteroid Analogues. 14. Alternative Ring System Scaffolds: GABA Modulatory and Anesthetic Actions of Cyclopenta[b]phenanthrenes and Cyclopenta[b]anthracenes. Journal of Medicinal Chemistry, 2008, 51, 1309-1318.	6.4	11
84	Direct Cortical Inputs Erase Long-Term Potentiation at Schaffer Collateral Synapses. Journal of Neuroscience, 2008, 28, 9557-9563.	3.6	35
85	Brain stimulation & the treatment of refractory psychiatric disorders. Missouri Medicine, 2008, 105, 57-61.	0.3	0
86	Neuroexcitatory actions of Tamiflu and its carboxylate metabolite. Neuroscience Letters, 2007, 426, 54-58.	2.1	82
87	Neurosteroid migration to intracellular compartments reduces steroid concentration in the membrane and diminishes GABAâ€A receptor potentiation. Journal of Physiology, 2007, 584, 789-800.	2.9	36
88	GABAergic neurosteroids mediate the effects of ethanol on longâ€ŧerm potentiation in rat hippocampal slices. European Journal of Neuroscience, 2007, 26, 1881-1888.	2.6	44
89	Mechanisms of neurosteroid interactions with GABAA receptors. , 2007, 116, 35-57.		136
90	Effects of neurosteroid 3î±-hydroxy-5î±-pregnan-20-one on ethanol-mediated paired-pulse depression of population spikes in the CA1 region of rat hippocampal slices. Neuroscience Letters, 2006, 394, 28-32.	2.1	10

#	Article	IF	CITATIONS
91	Zinc Modulates Bidirectional Hippocampal Plasticity by Effects on NMDA Receptors. Journal of Neuroscience, 2006, 26, 7181-7188.	3.6	140
92	Nitrous Oxide (Laughing Gas) Facilitates Excitability in Rat Hippocampal Slices through \hat{l}^3 -Aminobutyric Acid A Receptor-mediated Disinhibition. Anesthesiology, 2005, 102, 230-234.	2.5	16
93	Ammonia-mediated LTP inhibition: Effects of NMDA receptor antagonists and l-carnitine. Neurobiology of Disease, 2005, 20, 615-624.	4.4	24
94	Neurosteroid Access to the GABAA Receptor. Journal of Neuroscience, 2005, 25, 11605-11613.	3.6	144
95	New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of $5\hat{l}$ ±-reduced neuroactive steroids. Pain, 2005, 114, 429-443.	4.2	121
96	Selective Antagonism of $5\hat{l}_{\pm}$ -Reduced Neurosteroid Effects at GABAA Receptors. Molecular Pharmacology, 2004, 65, 1191-1197.	2.3	81
97	5Î ² -Reduced Neuroactive Steroids Are Novel Voltage-Dependent Blockers of T-Type Ca2+ Channels in Rat Sensory Neurons in Vitro and Potent Peripheral Analgesics in Vivo. Molecular Pharmacology, 2004, 66, 1223-1235.	2.3	80
98	Slow Actions of Neuroactive Steroids at GABAA Receptors. Journal of Neuroscience, 2004, 24, 6667-6675.	3.6	102
99	Activationâ€Dependent Properties of Pregnenolone Sulfate Inhibition of GABA A Receptorâ€Mediated Current. Journal of Physiology, 2003, 550, 679-691.	2.9	62
100	Neurosteroid Analogues. 9. Conformationally Constrained Pregnanes:  Structureâ^'Activity Studies of 13,24-Cyclo-18,21-dinorcholane Analogues of the GABA Modulatory and Anesthetic Steroids (3α,5α)- and (3α,5β)-3-Hydroxypregnan-20-one. Journal of Medicinal Chemistry, 2003, 46, 5334-5348.	6.4	31
101	Early Exposure to Common Anesthetic Agents Causes Widespread Neurodegeneration in the Developing Rat Brain and Persistent Learning Deficits. Journal of Neuroscience, 2003, 23, 876-882.	3.6	1,832
102	$3\hat{l}^2$ -Hydroxypregnane Steroids Are Pregnenolone Sulfate-Like GABAAReceptor Antagonists. Journal of Neuroscience, 2002, 22, 3366-3375.	3.6	141
103	Recent developments in structure–activity relationships for steroid modulators of GABAA receptors. Brain Research Reviews, 2001, 37, 91-97.	9.0	73
104	Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia, 2001, 33, 24-35.	4.9	24
105	Neural Activity and Survival in the Developing Nervous System. Molecular Neurobiology, 2000, 22, 041-054.	4.0	111
106	Pregnenolone Sulfate Modulates Inhibitory Synaptic Transmission by Enhancing GABA _A Receptor Desensitization. Journal of Neuroscience, 2000, 20, 3571-3579.	3.6	93
107	Steroid Inhibition of Rat Neuronal Nicotinic $\hat{l}\pm4\hat{l}^22$ Receptors Expressed in HEK 293 Cells. Molecular Pharmacology, 2000, 58, 341-351.	2.3	73
108	Mı̈¿ $\frac{1}{2}$ ller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia, 1999, 25, 379-389.	4.9	53

#	Article	IF	CITATIONS
109	Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. , 1999, 31, 196-202.		98
110	Pregnenolone sulfate and dehydroepiandrosterone sulfate inhibit GABA-gated chloride currents in Xenopus oocytes expressing picrotoxin-insensitive GABAA receptors. Neuropharmacology, 1999, 38, 267-271.	4.1	55
111	MÃ $\frac{1}{4}$ ller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. , 1999, 25, 379.		1
112	Oxygen Deprivation Produces Delayed Inhibition of Long-Term Potentiation by Activation of NMDA Receptors and Nitric Oxide Synthase. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 97-108.	4.3	19
113	Enantioselective modulation of GABAergic synaptic transmission by steroids and benz[e]indenes in hippocampal microcultures., 1998, 29, 162-171.		30
114	Neurosteroid Analogues. 6. The Synthesis and GABAAReceptor Pharmacology of Enantiomers of Dehydroepiandrosterone Sulfate, Pregnenolone Sulfate, and $(3\hat{1}\pm,5\hat{1}^2)$ -3-Hydroxypregnan-20-one Sulfate. Journal of Medicinal Chemistry, 1998, 41, 2604-2613.	6.4	66
115	Enantioselective Blockade of T-type Ca ²⁺ Current in Adult Rat Sensory Neurons by a Steroid That Lacks Î ³ -Aminobutyric Acid-Modulatory Activity. Molecular Pharmacology, 1998, 54, 918-927.	2.3	50
116	Effect of Nitrous Oxide on Excitatory and Inhibitory Synaptic Transmission in Hippocampal Cultures. Journal of Neuroscience, 1998, 18, 9716-9726.	3.6	181
117	Neurosteroid analogues. Part 5.1 Enantiomers of neuroactive steroids and benz[e]indenes: total synthesis, electrophysiological effects on GABAA receptor function and anesthetic actions in tadpoles. Journal of the Chemical Society Perkin Transactions 1, 1997, , 3665-3672.	0.9	32
118	Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neuroscience Letters, 1997, 232, 17-20.	2.1	50
119	Noradrenergic Regulation of Synaptic Plasticity in the Hippocampal CA1 Region. Journal of Neurophysiology, 1997, 77, 3013-3020.	1.8	232
120	Involvement of nitric oxide in low glucose-mediated inhibition of hippocampal long-term potentiation., 1997, 25, 258-262.		25
121	Swelling of MÃ $^{1}\!\!/\!\!4$ ller cells induced by AP3 and glutamate transport substrates in rat retina. , 1996, 17, 285-293.		22
122	Developmental changes in long-term potentiation in CA1 of rat hippocampal slices. Synapse, 1995, 20, 19-23.	1.2	37
123	Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature, 1994, 367, 175-179.	27.8	279
124	Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature, 1994, 368, 59-62.	27.8	317
125	Concanavalin a enhances excitatory synaptic transmission in cultured rat hippocampal neurons. Synapse, 1993, 13, 94-97.	1.2	15
126	Excitotoxic neuronal damage and neuropsychiatric disorders. , 1993, 59, 145-162.		74

#	Article	IF	CITATIONS
127	Low concentrations of inhibit the induction of long-term potentiation in rat hippocampal slices. Neuroscience Letters, 1992, 137, 245-248.	2.1	57
128	Norepinephrine reverses inhibition of long-term potentiation in rat hippocampal slices. Neuroscience Letters, 1992, 142, 163-166.	2.1	21
129	The treatment of late age onset psychoses with electroconvulsive therapy. International Journal of Geriatric Psychiatry, 1992, 7, 183-189.	2.7	6
130	Volatile anesthetics gate a chloride current in postnatal rat hippocampal neurons. FASEB Journal, 1992, 6, 914-918.	0.5	41
131	<i>Response</i> : Carbamate Formation and the Neurotoxicity of L-α Amino Acids. Science, 1991, 251, 1619-1620.	12.6	2
132	Elevated potassium shortens action potential duration by altering outward currents in chick dorsal root ganglia neurons. Journal of Neurobiology, 1990, 21, 661-671.	3.6	3
133	Ketamine, Phencyclidine, and MKâ€801 Protect Against Kainic Acidâ€Induced Seizureâ€Related Brain Damage. Epilepsia, 1990, 31, 382-390.	5.1	201
134	Calcium-dependent, slow desensitization distinguishes different types of glutamate receptors. Cellular and Molecular Neurobiology, 1989, 9, 95-104.	3.3	55
135	ECT: Clinical Variables, Seizure Duration, and Outcome. Convulsive Therapy, 1986, 2, 109-119.	0.1	8
136	Acute Effects of Lithium on Hippocampal Kindled Seizures. Epilepsia, 1985, 26, 689-692.	5.1	23
137	Acute effects of antidepressants on hippocampal seizures. Annals of Neurology, 1985, 18, 692-697.	5.3	31
138	Studies of Glial Glutamate Transporters in Hippocampal Microcultures. , 0, , 217-238.		0