Max L Nibert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7038946/publications.pdf

Version: 2024-02-01

34105 30922 11,225 110 52 102 citations h-index g-index papers 112 112 112 9706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of a Novel Species of Trichomonasvirus in the Human Parasite Trichomonas vaginalis Using Transcriptome Mining. Viruses, 2022, 14, 548.	3.3	2
2	Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology, 2021, 166, 2633-2648.	2.1	219
3	Binomial nomenclature for virus species: a consultation. Archives of Virology, 2020, 165, 519-525.	2.1	51
4	A Novel Taxon of Monosegmented Double-Stranded RNA Viruses Endemic to Triclad Flatworms. Journal of Virology, 2020, 94, .	3.4	8
5	Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Archives of Virology, 2020, 165, 2737-2748.	2.1	202
6	Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Archives of Virology, 2019, 164, 943-946.	2.1	102
7	Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Archives of Virology, 2019, 164, 2417-2429.	2.1	257
8	Mitovirus and Mitochondrial Coding Sequences from Basal Fungus Entomophthora muscae. Viruses, 2019, 11, 351.	3.3	21
9	Beta vulgaris mitovirus 1 in diverse cultivars of beet and chard. Virus Research, 2019, 265, 80-87.	2.2	7
10	The dynamics of both filamentous and globular mammalian reovirus viral factories rely on the microtubule network. Virology, 2018, 518, 77-86.	2.4	20
11	Evidence for contemporary plant mitoviruses. Virology, 2018, 518, 14-24.	2.4	95
12	A barnavirus sequence mined from a transcriptome of the Antarctic pearlwort Colobanthus quitensis. Archives of Virology, 2018, 163, 1921-1926.	2.1	15
13	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Archives of Virology, 2018, 163, 2601-2631.	2.1	567
14	ICTV Virus Taxonomy Profile: Partitiviridae. Journal of General Virology, 2018, 99, 17-18.	2.9	202
15	Amalga-like virus infecting Antonospora locustae , a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Research, 2017, 233, 95-104.	2.2	18
16	Mitovirus UGA(Trp) codon usage parallels that of host mitochondria. Virology, 2017, 507, 96-100.	2.4	53
17	50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Archives of Virology, 2017, 162, 1441-1446.	2.1	72
18	Complete cryspovirus genome sequences from Cryptosporidium parvum isolate Iowa. Archives of Virology, 2017, 162, 2875-2879.	2.1	10

#	Article	IF	Citations
19	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology, 2017, 162, 2505-2538.	2.1	506
20	Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 2017, 15, 161-168.	28.6	590
21	Dissection of mammalian orthoreovirus $\hat{A}\mu 2$ reveals a self-associative domain required for binding to microtubules but not to factory matrix protein $\hat{A}\mu NS$. PLoS ONE, 2017, 12, e0184356.	2.5	13
22	A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology, 2016, 498, 201-208.	2.4	53
23	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 2016, 161, 2921-2949.	2.1	263
24	Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae. Virus Research, 2016, 217, 115-124.	2.2	30
25	Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE) Tj ETQq1 1 0.784314 rg States of America, 2015, 112, E4354-63.	gBT /Overl 7.1	ock 10 Tf 50 56
26	Extended genome sequences of penaeid shrimp infectious myonecrosis virus strains from Brazil and Indonesia. Archives of Virology, 2015, 160, 1579-1583.	2.1	14
27	50-plus years of fungal viruses. Virology, 2015, 479-480, 356-368.	2.4	581
28	Three-Dimensional Structure of a Protozoal Double-Stranded RNA Virus That Infects the Enteric Pathogen Giardia lamblia. Journal of Virology, 2015, 89, 1182-1194.	3.4	42
29	An RNA cassette from Helminthosporium victoriae virus 190S necessary and sufficient for stop/restart translation. Virology, 2015, 474, 131-143.	2.4	28
30	Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Research, 2014, 188, 128-141.	2.2	271
31	Genetic diversification of penaeid shrimp infectious myonecrosis virus between Indonesia and Brazil. Virus Research, 2014, 189, 97-105.	2.2	16
32	Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins. Journal of General Virology, 2013, 94, 1039-1050.	2.9	44
33	Fibers come and go: differences in cell-entry components among related dsRNA viruses. Current Opinion in Virology, 2013, 3, 20-26.	5.4	15
34	3D Structures of Fungal Partitiviruses. Advances in Virus Research, 2013, 86, 59-85.	2.1	38
35	Structure of a Protozoan Virus from the Human Genitourinary Parasite Trichomonas vaginalis. MBio, 2013, 4, .	4.1	43
36	Three-dimensional Structure of Victorivirus HvV190S Suggests Coat Proteins in Most Totiviruses Share a Conserved Core. PLoS Pathogens, 2013, 9, e1003225.	4.7	33

#	Article	IF	Citations
37	Engineering recombinant reoviruses with tandem repeats and a tetravirus 2A-like element for exogenous polypeptide expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1867-76.	7.1	40
38	Bioinformatics of Recent Aqua- and Orthoreovirus Isolates from Fish: Evolutionary Gain or Loss of FAST and Fiber Proteins and Taxonomic Implications. PLoS ONE, 2013, 8, e68607.	2.5	66
39	Endobiont Viruses Sensed by the Human Host – Beyond Conventional Antiparasitic Therapy. PLoS ONE, 2012, 7, e48418.	2.5	117
40	Clinical Isolates of Trichomonas vaginalis Concurrently Infected by Strains of Up to Four Trichomonasvirus Species (Family Totiviridae). Journal of Virology, 2011, 85, 4258-4270.	3 . 4	63
41	Electron Cryo-Microscopy studies of Helminthosporium victoriae Virus 190S. Microscopy and Microanalysis, 2011, 17, 134-135.	0.4	0
42	Recruitment of Cellular Clathrin to Viral Factories and Disruption of Clathrinâ€Dependent Trafficking. Traffic, 2011, 12, 1179-1195.	2.7	24
43	Trichomonasvirus: a new genus of protozoan viruses in the family Totiviridae. Archives of Virology, 2011, 156, 171-179.	2.1	92
44	RNA Sequence Determinants of a Coupled Termination-Reinitiation Strategy for Downstream Open Reading Frame Translation in Helminthosporium victoriae Virus 190S and Other Victoriviruses (Family) Tj ETQq0	0 (3: 12gBT /	Ov es lock 10 1
45	Virion Structure of Baboon Reovirus, a Fusogenic Orthoreovirus That Lacks an Adhesion Fiber. Journal of Virology, 2011, 85, 7483-7495.	3.4	20
46	Localization of Mammalian Orthoreovirus Proteins to Cytoplasmic Factory-Like Structures via Nonoverlapping Regions of $\hat{l}\frac{1}{4}$ NS. Journal of Virology, 2010, 84, 867-882.	3. 4	68
47	Backbone Trace of Partitivirus Capsid Protein from Electron Cryomicroscopy and Homology Modeling. Biophysical Journal, 2010, 99, 685-694.	0.5	26
48	Structure of Fusarium poae virus 1 shows conserved and variable elements of partitivirus capsids and evolutionary relationships to picobirnavirus. Journal of Structural Biology, 2010, 172, 363-371.	2.8	42
49	Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell, 2010, 141, 668-681.	28.9	717
50	Atomic structure reveals the unique capsid organization of a dsRNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4225-4230.	7.1	80
51	Requirements for the Formation of Membrane Pores by the Reovirus Myristoylated $\hat{1}$ 41N Peptide. Journal of Virology, 2009, 83, 7004-7014.	3.4	55
52	Victorivirus, a new genus of fungal viruses in the family Totiviridae. Archives of Virology, 2009, 154, 373-379.	2.1	103
53	Cryspovirus: a new genus of protozoan viruses in the family Partitiviridae. Archives of Virology, 2009, 154, 1959-1965.	2.1	62
54	Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO Journal, 2008, 27, 1289-1298.	7.8	92

#	Article	IF	Citations
55	Formation of the factory matrix is an important, though not a sufficient function of nonstructural protein μNS during reovirus infection. Virology, 2008, 375, 412-423.	2.4	27
56	Partitivirus Structure Reveals a 120-Subunit, Helix-Rich Capsid with Distinctive Surface Arches Formed by Quasisymmetric Coat-Protein Dimers. Structure, 2008, 16, 776-786.	3.3	58
57	Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1. Structure, 2008, 16, 1678-1688.	3.3	148
58	Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17526-17531.	7.1	57
59	A positive-feedback mechanism promotes reovirus particle conversion to the intermediate associated with membrane penetration. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10571-10576.	7.1	31
60	Virus-derived Platforms for Visualizing Protein Associations inside Cells. Molecular and Cellular Proteomics, 2007, 6, 1027-1038.	3.8	31
61	â€~2A-like' and â€~shifty heptamer' motifs in penaeid shrimp infectious myonecrosis virus, a monosegmen double-stranded RNA virus. Journal of General Virology, 2007, 88, 1315-1318.	ted 2.9	57
62	Thermolabilizing Pseudoreversions in Reovirus Outer-Capsid Protein $\hat{l}/41$ Rescue the Entry Defect Conferred by a Thermostabilizing Mutation. Journal of Virology, 2007, 81, 7400-7409.	3.4	18
63	A Role for Molecular Chaperone Hsc70 in Reovirus Outer Capsid Disassembly. Journal of Biological Chemistry, 2007, 282, 12210-12219.	3.4	56
64	Guanidine Hydrochloride Inhibits Mammalian Orthoreovirus Growth by Reversibly Blocking the Synthesis of Double-Stranded RNA. Journal of Virology, 2007, 81, 4572-4584.	3.4	20
65	Thermostabilizing mutations in reovirus outer-capsid protein $\hat{l}/41$ selected by heat inactivation of infectious subvirion particles. Virology, 2007, 361, 412-425.	2.4	34
66	Silencing and complementation of reovirus core protein μ2: Functional correlations with μ2–microtubule association and differences between virus- and plasmid-derived Î⅓2. Virology, 2007, 364, 301-316.	2.4	13
67	Reovirus $\hat{1}\cancel{4}1$ Structural Rearrangements That Mediate Membrane Penetration. Journal of Virology, 2006, 80, 12367-12376.	3.4	52
68	Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16496-16501.	7.1	106
69	Features of Reovirus Outer Capsid Protein $\hat{l}/41$ Revealed by Electron Cryomicroscopy and Image Reconstruction of the Virion at 7.0 Å Resolution. Structure, 2005, 13, 1545-1557.	3.3	80
70	Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology, 2005, 343, 25-35.	2.4	62
71	Carboxyl-Proximal Regions of Reovirus Nonstructural Protein Î ¹ /4NS Necessary and Sufficient for Forming Factory-Like Inclusions. Journal of Virology, 2005, 79, 6194-6206.	3.4	74
72	Putative Autocleavage of Reovirus $\hat{l}/41$ Protein in Concert with Outer-capsid Disassembly and Activation for Membrane Permeabilization. Journal of Molecular Biology, 2005, 345, 461-474.	4.2	88

#	Article	IF	CITATIONS
73	Conserved Sequence Motifs for Nucleoside Triphosphate Binding Unique to Turreted Reoviridae Members and Coltiviruses. Journal of Virology, 2004, 78, 5528-5530.	3.4	25
74	Putative Autocleavage of Outer Capsid Protein $\hat{l}/41$, Allowing Release of Myristoylated Peptide $\hat{l}/41$ N during Particle Uncoating, Is Critical for Cell Entry by Reovirus. Journal of Virology, 2004, 78, 8732-8745.	3.4	120
75	Increased Ubiquitination and Other Covariant Phenotypes Attributed to a Strain- and Temperature-Dependent Defect of Reovirus Core Protein $1\frac{1}{4}$ 2. Journal of Virology, 2004, 78, 10291-10302.	3.4	25
76	Reovirus Nonstructural Protein \hat{l} /4NS Recruits Viral Core Surface Proteins and Entering Core Particles to Factory-Like Inclusions. Journal of Virology, 2004, 78, 1882-1892.	3.4	91
77	Cathepsin S Supports Acid-independent Infection by Some Reoviruses. Journal of Biological Chemistry, 2004, 279, 8547-8557.	3.4	47
78	Nucleoside and RNA Triphosphatase Activities of Orthoreovirus Transcriptase Cofactor $\hat{l}\frac{1}{4}$ 2. Journal of Biological Chemistry, 2004, 279, 4394-4403.	3.4	60
79	Comparisons of the M1 genome segments and encoded mu2 proteins of different reovirus isolates. Virology Journal, 2004, 1 , 6 .	3.4	42
80	Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits. Cell, 2004, 118, 591-605.	28.9	787
81	Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein–protein interfaces. Virus Research, 2004, 101, 15-28.	2.2	44
82	Reovirus polymerase \hat{I} » 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 \hat{A} Nature Structural and Molecular Biology, 2003, 10, 1011-1018.	8.2	154
83	Disulfide Bonding among $\hat{1}$ /41 Trimers in Mammalian Reovirus Outer Capsid: a Late and Reversible Step in Virion Morphogenesis. Journal of Virology, 2003, 77, 5389-5400.	3.4	18
84	Reovirus ÏfNS Protein Localizes to Inclusions through an Association Requiring the \hat{l} 4NS Amino Terminus. Journal of Virology, 2003, 77, 4566-4576.	3.4	73
85	The Î'Region of Outer-Capsid Proteinμ1 Undergoes Conformational Change and Release from ReovirusParticles during CellEntry. Journal of Virology, 2003, 77, 13361-13375.	3.4	88
86	Mammalian Reovirus Nonstructural Protein μNS Forms Large Inclusions and Colocalizes with Reovirus Microtubule-Associated Protein μ2 in Transfected Cells. Journal of Virology, 2002, 76, 8285-8297.	3.4	123
87	Strategy for Nonenveloped Virus Entry: a Hydrophobic Conformer of the Reovirus Membrane Penetration Protein ν1 Mediates Membrane Disruption. Journal of Virology, 2002, 76, 9920-9933.	3.4	166
88	The Hydrophilic Amino-Terminal Arm of Reovirus Core Shell Protein $\hat{l}*1$ Is Dispensable for Particle Assembly. Journal of Virology, 2002, 76, 12211-12222.	3.4	33
89	Sites and Determinants of Early Cleavages in the Proteolytic Processing Pathway of Reovirus Surface Protein Ïf 3. Journal of Virology, 2002, 76, 5184-5197.	3.4	42
90	Reovirus Core Protein 142 Determines the Filamentous Morphology of Viral Inclusion Bodies by Interacting with and Stabilizing Microtubules. Journal of Virology, 2002, 76, 4483-4496.	3.4	174

#	Article	IF	Citations
91	Thermostability of Reovirus Disassembly Intermediates (ISVPs) Correlates with Genetic, Biochemical, and Thermodynamic Properties of Major Surface Protein $\hat{l}\frac{1}{4}$ 1. Journal of Virology, 2002, 76, 1051-1061.	3.4	62
92	Structure of the Reovirus Membrane-Penetration Protein, $\hat{1}/41$, in a Complex with Its Protector Protein, $\hat{1}/3$. Cell, 2002, 108, 283-295.	28.9	225
93	RNA Synthesis in a Cage—Structural Studies of Reovirus Polymerase λ3. Cell, 2002, 111, 733-745.	28.9	309
94	Structure of the Human Reovirus Virion at $9.6 {\rm \hat{A}} \pm 1.000$ Resolution. Microscopy and Microanalysis, 2002, 8, 846-847.	0.4	0
95	Rotavirus Translation Control Protein Takes RNA to Heart. Structure, 2002, 10, 129-130.	3.3	3
96	Loss of Activities for mRNA Synthesis Accompanies Loss of \hat{l} »2 Spikes from Reovirus Cores: An Effect of \hat{l} »2 on \hat{l} »1 Shell Structure. Virology, 2002, 296, 24-38.	2.4	15
97	Mammalian Reovirus L2 Gene and \hat{l} »2 Core Spike Protein Sequences and Whole-Genome Comparisons of Reoviruses Type 1 Lang, Type 2 Jones, and Type 3 Dearing. Virology, 2001, 287, 333-348.	2.4	55
98	Complete In Vitro Assembly of the Reovirus Outer Capsid Produces Highly Infectious Particles Suitable for Genetic Studies of the Receptor-Binding Protein. Journal of Virology, 2001, 75, 5335-5342.	3.4	52
99	Structure of the reovirus core at 3.6?Ã resolution. Nature, 2000, 404, 960-967.	27.8	428
100	Identification of the Guanylyltransferase Region and Active Site in Reovirus mRNA Capping Protein \hat{l} »2. Journal of Biological Chemistry, 2000, 275, 2804-2810.	3.4	60
101	Reovirus Nonstructural Protein μNS Binds to Core Particles but Does Not Inhibit Their Transcription and Capping Activities. Journal of Virology, 2000, 74, 5516-5524.	3.4	55
102	Mammalian Reovirus L3 Gene Sequences and Evidence for a Distinct Amino-Terminal Region of the \hat{l} » 1 Protein. Virology, 1999, 258, 54-64.	2.4	31
103	Mammalian Reovirus M3 Gene Sequences and Conservation of Coiled-Coil Motifs near the Carboxyl Terminus of the \hat{l} 4NS Protein. Virology, 1999, 264, 16-24.	2.4	30
104	Reovirus Virion-Like Particles Obtained by Recoating Infectious Subvirion Particles with Baculovirus-Expressed ï,3 Protein: an Approach for Analyzing ï,3 Functions during Virus Entry. Journal of Virology, 1999, 73, 2963-2973.	3.4	47
105	In Vitro Recoating of Reovirus Cores with Baculovirus-Expressed Outer-Capsid Proteins $\hat{l}/41$ and $\hat{l}/3$. Journal of Virology, 1999, 73, 3941-3950.	3.4	113
106	Internal/Structures Containing Transcriptase-Related Proteins in Top Component Particles of Mammalian Orthoreovirus. Virology, 1998, 245, 33-46.	2.4	91
107	Binding Site for S-Adenosyl-l-methionine in a Central Region of Mammalian Reovirus λ2 Protein. Journal of Biological Chemistry, 1998, 273, 23773-23780.	3.4	45
108	Protease Cleavage of Reovirus Capsid Protein $\hat{1}\frac{1}{4}1\hat{1}\frac{1}{4}1C$ Is Blocked by Alkyl Sulfate Detergents, Yielding a New Type of Infectious Subvirion Particle. Journal of Virology, 1998, 72, 467-475.	3.4	56

#	Article	lF	CITATIONS
109	Cleavage Susceptibility of Reovirus Attachment Protein Ï,1 during Proteolytic Disassembly of Virions Is Determined by a Sequence Polymorphism in the Ï,1 Neck. Journal of Virology, 1998, 72, 8205-8213.	3.4	54
110	Complete nucleotide sequence of the M2 gene segment of reovirus type 3 dearing and analysis of its protein product $\hat{l}^{1}/41$. Virology, 1988, 163, 591-602.	2.4	68