Yu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7038193/publications.pdf

Version: 2024-02-01

349 papers 23,752 citations

7561 77 h-index 138 g-index

367 all docs

367 docs citations

367 times ranked

16011 citing authors

#	Article	IF	CITATIONS
1	Inhibition mechanisms of ammonia and sulfate in high-solids anaerobic digesters for food waste treatment: Microbial community and element distributions responses. Chinese Chemical Letters, 2023, 34, 107439.	4.8	17
2	Circular economy is game-changing municipal wastewater treatment technology towards energy and carbon neutrality. Chemical Engineering Journal, 2022, 429, 132114.	6.6	25
3	Twelve natural estrogens in urines of swine and cattle: Concentration profiles and importance of eight less-studied. Science of the Total Environment, 2022, 803, 150042.	3.9	17
4	Towards carbon neutrality and water sustainability: An integrated anaerobic fixed-film MBR-reverse osmosis-chlorination process for municipal wastewater reclamation. Chemosphere, 2022, 287, 132060.	4.2	12
5	Waste cooking oil used as carbon source for microbial lipid production: Promoter or inhibitor. Environmental Research, 2022, 203, 111881.	3.7	46
6	Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms. Bioresource Technology, 2022, 349, 126328.	4.8	26
7	Stability properties of natural estrogen conjugates in different aqueous samples at room temperature and tips for sample storage. Environmental Science and Pollution Research, 2022, 29, 24589-24598.	2.7	5
8	A mainstream anammox fixed-film membrane bioreactor with novel sandwich-structured carriers for fast start-up, effective sludge retention and membrane fouling mitigation. Bioresource Technology, 2022, 347, 126370.	4.8	13
9	Granule size informs the characteristics and performance of microalgal-bacterial granular sludge for wastewater treatment. Bioresource Technology, 2022, 346, 126649.	4.8	25
10	Sulfite may disrupt estrogen homeostasis in human via inhibition of steroid arylsulfatase. Environmental Science and Pollution Research, 2022, 29, 19913.	2.7	2
11	Necessity of direct energy and ammonium recovery for carbon neutral municipal wastewater reclamation in an innovative anaerobic MBR-biochar adsorption-reverse osmosis process. Water Research, 2022, 211, 118058.	5.3	30
12	Facile Synthesis of Magnetic Biochar Derived from Burley Tobacco Stems towards Enhanced Cr(VI) Removal: Performance and Mechanism. Nanomaterials, 2022, 12, 678.	1.9	22
13	Dissolved methane in anaerobic effluent: Emission or recovery?. Frontiers of Environmental Science and Engineering, 2022, $16, 1$.	3.3	3
14	A continuous-flow non-aerated microalgal-bacterial granular sludge process for aquaculture wastewater treatment under natural day-night conditions. Bioresource Technology, 2022, 350, 126914.	4.8	19
15	Microalgal-bacterial granular sludge for municipal wastewater treatment: From concept to practice. Bioresource Technology, 2022, 354, 127201.	4.8	23
16	Twelve natural estrogens in urines of six threatened or endangered mammalian species in Zoo Park: implications and their potential risk. Environmental Science and Pollution Research, 2022, 29, 49404-49410.	2.7	5
17	Deciphering the concurrence of comammox, partial denitrification and anammox in a single low-oxygen mainstream nitrogen removal reactor. Chemosphere, 2022, 305, 135409.	4.2	18
18	Making waves: Improving removal performance of conventional wastewater treatment plants on endocrine disrupting compounds (EDCs): their conjugates matter. Water Research, 2021, 188, 116469.	5. 3	46

#	Article	IF	CITATIONS
19	A novel single-stage ceramic membrane moving bed biofilm reactor coupled with reverse osmosis for reclamation of municipal wastewater to NEWater-like product water. Chemosphere, 2021, 268, 128836.	4.2	15
20	Reverse osmosis concentrate: An essential link for closing loop of municipal wastewater reclamation towards urban sustainability. Chemical Engineering Journal, 2021, 421, 127773.	6.6	17
21	Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	31
22	Microalgal-bacterial granular sludge process: A game changer of future municipal wastewater treatment?. Science of the Total Environment, 2021, 752, 141957.	3.9	77
23	Legislation against endocrine-disrupting compounds in drinking water: essential but not enough to ensure water safety. Environmental Science and Pollution Research, 2021, 28, 19505-19510.	2.7	20
24	Cadmium-effect on performance and symbiotic relationship of microalgal-bacterial granules. Journal of Cleaner Production, 2021, 282, 125383.	4.6	33
25	Veterinary antibiotics in swine and cattle wastewaters of China and the United States: Features and differences. Water Environment Research, 2021, 93, 1516-1529.	1.3	13
26	Inhibition Properties of Arylsulfatase and \hat{I}^2 -Glucuronidase by Hydrogen Peroxide, Hypochlorite, and Peracetic Acid. ACS Omega, 2021, 6, 8163-8170.	1.6	5
27	Possible overestimation of bisphenol analogues in municipal wastewater analyzed with GC-MS. Environmental Pollution, 2021, 273, 116505.	3.7	18
28	Temperature-effect on the performance of non-aerated microalgal-bacterial granular sludge process in municipal wastewater treatment. Journal of Environmental Management, 2021, 282, 111955.	3.8	66
29	Microalgal-bacterial granular sludge for municipal wastewater treatment under simulated natural diel cycles: Performances-metabolic pathways-microbial community nexus. Algal Research, 2021, 54, 102198.	2.4	33
30	Occurrence and removal of $17\hat{l}_{\pm}$ -ethynylestradiol (EE2) in municipal wastewater treatment plants: Current status and challenges. Chemosphere, 2021, 271, 129551.	4.2	49
31	Tetracycline-induced decoupling of symbiosis in microalgal-bacterial granular sludge. Environmental Research, 2021, 197, 111095.	3.7	34
32	Far-Less Studied Natural Estrogens as Ignored Emerging Contaminants in Surface Water: Insights from Their Occurrence in the Pearl River, South China. ACS ES&T Water, 2021, 1, 1776-1784.	2.3	11
33	Integrated forward osmosis-adsorption process for strontium-containing water treatment: Pre-concentration and solidification. Journal of Hazardous Materials, 2021, 414, 125518.	6.5	17
34	Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward. Bioresource Technology, 2021, 334, 125231.	4.8	45
35	A review of $17\hat{1}\pm$ -ethynylestradiol (EE2) in surface water across 32 countries: Sources, concentrations, and potential estrogenic effects. Journal of Environmental Management, 2021, 292, 112804.	3.8	52
36	Insight into the rapid biogranulation for suspended single-cell microalgae harvesting in wastewater treatment systems: Focus on the role of extracellular polymeric substances. Chemical Engineering Journal, 2021, , 132631.	6.6	6

#	Article	IF	CITATIONS
37	A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T Water, 2021, 1, 2174-2185.	2.3	8
38	Concurrent removal of Cu(II), Co(II) and Ni(II) from wastewater by nanostructured layered sodium vanadosilicate: Competitive adsorption kinetics and mechanisms. Journal of Environmental Chemical Engineering, 2021, 9, 105945.	3. 3	11
39	Phosphate recovery from the P-enriched brine of AnMBR-RO-IE treating municipal wastewater via an innovated phosphorus recovery batch reactor with nano-sorbents. Chemosphere, 2021, 284, 131259.	4.2	5
40	The Limitations in Current Studies of Organic Fouling and Future Prospects. Membranes, 2021, 11, 922.	1.4	3
41	Assessment of Microalgal-Bacterial Granular Sludge Process for Environmentally Sustainable Municipal Wastewater Treatment. ACS ES&T Water, 2021, 1, 2459-2469.	2.3	40
42	Potential toxicity and implication of halogenated byproducts generated in MBR onlineâ€cleaning with hypochlorite. Journal of Chemical Technology and Biotechnology, 2020, 95, 20-26.	1.6	8
43	Performance, membrane fouling control and cost analysis of an integrated anaerobic fixed-film MBR and reverse osmosis process for municipal wastewater reclamation to NEWater-like product water. Journal of Membrane Science, 2020, 593, 117442.	4.1	52
44	A review on mainstream deammonification of municipal wastewater: Novel dual step process. Bioresource Technology, 2020, 299, 122674.	4.8	31
45	Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: Comparison with an anoxic-aerobic MBR coupled with RO. Chemosphere, 2020, 245, 125569.	4.2	30
46	Modelling bacterial chemotaxis for indirectly binding attractants. Journal of Theoretical Biology, 2020, 487, 110120.	0.8	2
47	Formation mechanisms of emerging organic contaminants during on-line membrane cleaning with NaOCl in MBR. Journal of Hazardous Materials, 2020, 386, 121966.	6.5	29
48	Performance and microbial community in a single-stage simultaneous carbon oxidation, partial nitritation, denitritation and anammox system treating synthetic coking wastewater under the stress of phenol. Chemosphere, 2020, 243, 125382.	4.2	30
49	A novel micro-ferrous dosing strategy for enhancing biological phosphorus removal from municipal wastewater. Science of the Total Environment, 2020, 704, 135453.	3.9	41
50	Delicate manipulation of cobalt oxide nanodot clusterization on binder-free TiO2-nanorod photoanodes for efficient photoelectrochemical catalysis. Journal of Alloys and Compounds, 2020, 820, 153139.	2.8	5
51	Global review of phthalates in edible oil: An emerging and nonnegligible exposure source to human. Science of the Total Environment, 2020, 704, 135369.	3.9	56
52	Development of an integrated aerobic granular sludge MBR and reverse osmosis process for municipal wastewater reclamation. Science of the Total Environment, 2020, 748, 141309.	3.9	8
53	Catalytic pyrolysis of rain tree biomass with nano nickel oxide synthetized from nickel plating slag: A green path for treating waste by waste. Bioresource Technology, 2020, 315, 123831.	4.8	30
54	Architecting epitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodide nano-heterostructures for efficient photocatalysis. Journal of Materials Chemistry C, 2020, 8, 11263-11273.	2.7	19

#	Article	IF	Citations
55	Simultaneous anti-fouling and flux-enhanced membrane distillation via incorporating graphene oxide on PTFE membrane for coking wastewater treatment. Applied Surface Science, 2020, 531, 147349.	3.1	39
56	Defensive responses of microalgal-bacterial granules to tetracycline in municipal wastewater treatment. Bioresource Technology, 2020, 312, 123605.	4.8	56
57	Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse. Journal of Cleaner Production, 2020, 267, 121903.	4.6	68
58	An innovative alkaline protease-based pretreatment approach for enhanced short-chain fatty acids production via a short-term anaerobic fermentation of waste activated sludge. Bioresource Technology, 2020, 312, 123397.	4.8	19
59	Ultrafast removal of radioactive strontium ions from contaminated water by nanostructured layered sodium vanadosilicate with high adsorption capacity and selectivity. Journal of Hazardous Materials, 2020, 398, 122907.	6.5	38
60	Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water. Water Research, 2020, 182, 115976.	5.3	40
61	State of the art of straw treatment technology: Challenges and solutions forward. Bioresource Technology, 2020, 313, 123656.	4.8	69
62	Mechanism of phosphate adsorption on superparamagnetic microparticles modified with transitional elements: Experimental observation and computational modelling. Chemosphere, 2020, 258, 127327.	4.2	11
63	Nanomaterials for radioactive wastewater decontamination. Environmental Science: Nano, 2020, 7, 1008-1040.	2.2	60
64	An environmentally sustainable approach for online chemical cleaning of MBR with activated peroxymonosulfate. Journal of Membrane Science, 2020, 600, 117872.	4.1	25
65	Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Science of the Total Environment, 2020, 713, 136583.	3.9	88
66	New insight into enhanced production of short-chain fatty acids from waste activated sludge by cation exchange resin-induced hydrolysis. Chemical Engineering Journal, 2020, 388, 124235.	6.6	92
67	A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Research, 2020, 179, 115884.	5.3	160
68	Food Waste to Biofertilizer: A Potential Game Changer of Global Circular Agricultural Economy. Journal of Agricultural and Food Chemistry, 2020, 68, 5021-5023.	2.4	30
69	Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process. Bioresource Technology, 2020, 312, 123531.	4.8	58
70	The role of transparent exopolymer particles (TEP) in membrane fouling: A critical review. Water Research, 2020, 181, 115930.	5. 3	128
71	One step further to closed water loop: Reclamation of municipal wastewater to high-grade product water. Chinese Science Bulletin, 2020, 65, 1358-1367.	0.4	5
72	Biodiesel Production: Status and Perspectives. , 2019, , 503-522.		10

#	Article	IF	Citations
73	Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox. Science of the Total Environment, 2019, 692, 393-401.	3.9	149
74	Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants. Science of the Total Environment, 2019, 692, 107-116.	3.9	116
75	Technology feasibility and economic viability of an innovative integrated ceramic membrane bioreactor and reverse osmosis process for producing ultrapure water from municipal wastewater. Chemical Engineering Journal, 2019, 375, 122078.	6.6	30
76	Enhanced methane production from waste activated sludge by combining calcium peroxide with ultrasonic: Performance, mechanism, and implication. Bioresource Technology, 2019, 279, 108-116.	4.8	52
77	Halogenated organics generated during online chemical cleaning of MBR: An emerging threat to water supply and public health. Science of the Total Environment, 2019, 656, 547-549.	3.9	11
78	An innovative anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal wastewater to NEWater-like product water. Journal of Cleaner Production, 2019, 230, 1287-1293.	4.6	64
79	Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnology Advances, 2019, 37, 107414.	6.0	218
80	Environmental sustainability: a pressing challenge to biological sewage treatment processes. Current Opinion in Environmental Science and Health, 2019, 12, 1-5.	2.1	39
81	Bacterial community and eutrophic index analysis of the East Lake. Environmental Pollution, 2019, 252, 682-688.	3.7	40
82	Integrated upflow anaerobic fixed-bed and single-stage step-feed process for mainstream deammonification: A step further towards sustainable municipal wastewater reclamation. Science of the Total Environment, 2019, 678, 559-564.	3.9	25
83	Insights into microbial community profiles associated with electric energy production in microbial fuel cells fed with food waste hydrolysate. Science of the Total Environment, 2019, 670, 50-58.	3.9	30
84	Engineering feasibility, economic viability and environmental sustainability of energy recovery from nitrous oxide in biological wastewater treatment plant. Bioresource Technology, 2019, 282, 514-519.	4.8	78
85	Dynamics of microbial community and tetracycline resistance genes in biological nutrient removal process. Journal of Environmental Management, 2019, 238, 84-91.	3.8	33
86	Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge?. Science of the Total Environment, 2019, 668, 893-902.	3.9	68
87	A novel variable pH control strategy for enhancing lipid production from food waste: Biodiesel versus docosahexaenoic acid. Energy Conversion and Management, 2019, 189, 60-66.	4.4	22
88	Bioactivities and formation/utilization of soluble microbial products (SMP) in the biological sulfate reduction under different conditions. Chemosphere, 2019, 221, 37-44.	4.2	26
89	Efficient nano-regional photocatalytic heterostructure design via the manipulation of reaction site self-quenching effect. Applied Catalysis B: Environmental, 2019, 243, 220-228.	10.8	19
90	Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system. Chemosphere, 2019, 216, 749-756.	4.2	47

#	Article	IF	CITATIONS
91	NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment. Chemosphere, 2019, 216, 633-639.	4.2	32
92	Decontamination of radioactive wastewater: State of the art and challenges forward. Chemosphere, 2019, 215, 543-553.	4.2	141
93	Remediation of oil spill-contaminated sands by chemical-free microbubbles generated in tap and saline water. Journal of Hazardous Materials, 2019, 366, 124-129.	6.5	11
94	Advanced treatment of salty eutrophication water using algal-bacterial granular sludge: With focus on nitrogen removal, phosphorus removal, and lipid accumulation. BioResources, 2019, 14, 9518-9530.	0.5	7
95	Mainstream anammox in a novel A-2B process for energy-efficient municipal wastewater treatment with minimized sludge production. Water Research, 2018, 138, 1-6.	5.3	117
96	Monitoring local membrane fouling mitigation by fluidized GAC in lab-scale and pilot-scale AnFMBRs. Separation and Purification Technology, 2018, 199, 331-345.	3.9	14
97	Enhanced phenol removal in an innovative lignite activated coke-assisted biological process. Bioresource Technology, 2018, 260, 357-363.	4.8	21
98	Bioaccumulation of Persistent Halogenated Organic Pollutants in Insects: Common Alterations to the Pollutant Pattern for Different Insects during Metamorphosis. Environmental Science & Emp; Technology, 2018, 52, 5145-5153.	4.6	35
99	Effect of tetracycline on microbial community structure associated with enhanced biological N&P removal in sequencing batch reactor. Bioresource Technology, 2018, 256, 414-420.	4.8	55
100	Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion. Bioresource Technology, 2018, 255, 281-287.	4.8	59
101	A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and anammox (SCONDA) for treating ammonia-rich organic wastewater. Bioresource Technology, 2018, 254, 50-55.	4.8	65
102	Full nitration-denitration versus partial nitration-denitration-anammox for treating high-strength ammonium-rich organic wastewater. Bioresource Technology, 2018, 261, 379-384.	4.8	32
103	Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite. Water Research, 2018, 140, 243-250.	5.3	63
104	A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresource Technology, 2018, 247, 1069-1076.	4.8	432
105	Fate of tetracycline in enhanced biological nutrient removal process. Chemosphere, 2018, 193, 998-1003.	4.2	60
106	Oxidative stress induced membrane biofouling and its implications to on-line chemical cleaning in MBR. Chemical Engineering Journal, 2018, 334, 1917-1926.	6.6	21
107	A novel strategy towards sustainable and stable nitritation-denitritation in an A-B process for mainstream municipal wastewater treatment. Chemosphere, 2018, 193, 921-927.	4.2	15
108	Comparative study of dissolved organic matter generated from activated sludge during exposure to hypochlorite, hydrogen peroxide, acid and alkaline: Implications for on-line chemical cleaning of MBR. Chemosphere, 2018, 193, 295-303.	4.2	26

#	Article	IF	Citations
109	4-Chlorophenol Oxidation Depends on the Activation of an AraC-Type Transcriptional Regulator, CphR, in Rhodococcus sp. Strain YH-5B. Frontiers in Microbiology, 2018, 9, 2481.	1.5	5
110	Migration and potential risk of trace phthalates in bottled water: AÂglobal situation. Water Research, 2018, 147, 362-372.	5.3	134
111	Ceramic membrane fouling by dissolved organic matter generated during on-line chemical cleaning with ozone in MBR. Water Research, 2018, 146, 328-336.	5.3	31
112	Energy self-sufficient biological municipal wastewater reclamation: Present status, challenges and solutions forward. Bioresource Technology, 2018, 269, 513-519.	4.8	89
113	Evaluation of anaerobic digestion of food waste and waste activated sludge: Soluble COD versus its chemical composition. Science of the Total Environment, 2018, 643, 21-27.	3.9	82
114	Enhanced dewaterability of waste activated sludge with Fe(II)-activated hypochlorite treatment. Environmental Science and Pollution Research, 2018, 25, 27628-27638.	2.7	32
115	A novel integrated thiosulfate-driven denitritation (TDD) and anaerobic ammonia oxidation (anammox) process for biological nitrogen removal. Biochemical Engineering Journal, 2018, 139, 68-73.	1.8	17
116	Microbial lipid production from food waste saccharified liquid and the effects of compositions. Energy Conversion and Management, 2018, 172, 306-315.	4.4	32
117	Biodiesels from microbial oils: Opportunity and challenges. Bioresource Technology, 2018, 263, 631-641.	4.8	121
118	Intermolecular interactions of polysaccharides in membrane fouling during microfiltration. Water Research, 2018, 143, 38-46.	5.3	82
119	Using an Attapulgite-Activated Carbon Composite Ceramisite Biofilter to Remove Dibutyl Phthalate from Source Water. Polish Journal of Environmental Studies, 2018, 27, 897-903.	0.6	4
120	Effect of mechanical scouring by granular activated carbon (GAC) on membrane fouling mitigation. Desalination, 2017, 403, 80-87.	4.0	49
121	Transparent exopolymer particles (TEP)-associated membrane fouling at different Na+ concentrations. Water Research, 2017, 111, 52-58.	5. 3	27
122	Fate of dissolved organic matter and byproducts generated from on-line chemical cleaning with sodium hypochlorite in MBR. Chemical Engineering Journal, 2017, 323, 233-242.	6.6	50
123	New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer. Bioresource Technology, 2017, 241, 448-453.	4.8	80
124	Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 507-514.	0.9	7
125	An integrated AMBBR and IFAS-SBR process for municipal wastewater treatment towards enhanced energy recovery, reduced energy consumption and sludge production. Water Research, 2017, 110, 262-269.	5.3	61
126	A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery. Bioresource Technology, 2017, 228, 56-61.	4.8	60

#	Article	IF	CITATIONS
127	Single-stage versus two-stage anaerobic fluidized bed bioreactors in treating municipal wastewater: Performance, foulant characteristics, and microbial community. Chemosphere, 2017, 171, 158-167.	4.2	54
128	Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 1073-1081.	0.9	4
129	An integrated engineering system for maximizing bioenergy production from food waste. Applied Energy, 2017, 206, 83-89.	5.1	74
130	A novel A-B process for enhanced biological nutrient removal in municipal wastewater reclamation. Chemosphere, 2017, 189, 39-45.	4.2	25
131	Enhanced microbubbles assisted cleaning of diesel contaminated sand. Marine Pollution Bulletin, 2017, 124, 331-335.	2.3	19
132	Effect of fluidized granular activated carbon (GAC) on critical flux in the microfiltration of particulate foulants. Journal of Membrane Science, 2017, 523, 409-417.	4.1	26
133	Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds. Water Research, 2016, 102, 594-606.	5.3	81
134	Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresource Technology, 2016, 218, 373-379.	4.8	76
135	Phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia in a horizontal subsurface flow constructed wetland. Water Research, 2016, 102, 294-304.	5.3	61
136	Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate. Water Science and Technology, 2016, 74, 448-456.	1.2	23
137	Enhanced membrane biofouling potential by on-line chemical cleaning in membrane bioreactor. Journal of Membrane Science, 2016, 511, 84-91.	4.1	77
138	Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Applied Energy, 2016, 179, 1131-1137.	5.1	157
139	Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR. Water Research, 2016, 104, 44-52.	5.3	72
140	Numerical simulation of plain concrete specimens with micromechanical model and simple lattice model. Magazine of Concrete Research, 2016, 68, 971-980.	0.9	1
141	State of the art of biological processes for coal gasification wastewater treatment. Biotechnology Advances, 2016, 34, 1064-1072.	6.0	103
142	Remediation of oil-contaminated sand with self-collapsing air microbubbles. Environmental Science and Pollution Research, 2016, 23, 23876-23883.	2.7	29
143	COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Scientific Reports, 2016, 6, 25054.	1.6	148
144	New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios. Scientific Reports, 2016, 6, 19747.	1.6	29

#	Article	IF	Citations
145	Characterization of microbial communities in wetland mesocosms receiving caffeine-enriched wastewater. Environmental Science and Pollution Research, 2016, 23, 14526-14539.	2.7	13
146	High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 2016, 562, 604-613.	3.9	52
147	Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation. Desalination, 2016, 380, 43-51.	4.0	85
148	Characterizing the scouring efficiency of Granular Activated Carbon (GAC) particles in membrane fouling mitigation via wavelet decomposition of accelerometer signals. Journal of Membrane Science, 2016, 498, 105-115.	4.1	43
149	Correlating the hydrodynamics of fluidized granular activated carbon (GAC) with membrane-fouling mitigation. Journal of Membrane Science, 2016, 510, 38-49.	4.1	45
150	Characterization of bacterial communities in wetland mesocosms receiving pharmaceutical-enriched wastewater. Ecological Engineering, 2016, 90, 215-224.	1.6	34
151	Free nitrous acid inhibition on carbon storage microorganisms: Accumulated inhibitory effects and recoverability. Chemical Engineering Journal, 2016, 287, 285-291.	6.6	16
152	Ibuprofen removal in horizontal subsurface flow constructed wetlands: treatment performance and fungal community dynamics. Environmental Technology (United Kingdom), 2016, 37, 1467-1479.	1.2	7
153	Enhanced performance of submerged hollow fibre microfiltration by fluidized granular activated carbon. Journal of Membrane Science, 2016, 499, 47-55.	4.1	33
154	Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen. Bioresource Technology, 2015, 179, 460-466.	4.8	87
155	The challenges of mainstream deammonification process for municipal used water treatment. Applied Microbiology and Biotechnology, 2015, 99, 2485-2490.	1.7	158
156	Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresource Technology, 2015, 183, 47-52.	4.8	109
157	A brief review on possible approaches towards controlling sulfate-reducing bacteria (SRB) in wastewater treatment systems. Desalination and Water Treatment, 2015, 53, 2799-2807.	1.0	23
158	Treatment of high salinity brines by direct contact membrane distillation: Effect of membrane characteristics and salinity. Chemosphere, 2015, 140, 143-149.	4.2	67
159	Ultrafiltration behaviors of alginate blocks at various calcium concentrations. Water Research, 2015, 83, 248-257.	5.3	76
160	Wastewater-Energy Nexus. Chemosphere, 2015, 140, 1.	4.2	3
161	Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel, 2015, 159, 463-469.	3.4	114
162	Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). Journal of Environmental Sciences, 2015, 30, 30-46.	3.2	110

#	Article	IF	CITATIONS
163	Remediation technologies for oil-contaminated sediments. Marine Pollution Bulletin, 2015, 101, 483-490.	2.3	77
164	N2O accumulation from denitrification under different temperatures. Applied Microbiology and Biotechnology, 2015, 99, 9215-9226.	1.7	27
165	Molecular mechanisms governing aerobic granular sludge processes. Water Practice and Technology, 2015, 10, 277-281.	1.0	1
166	Sample-preparation methods for direct and indirect analysis of natural estrogens. TrAC - Trends in Analytical Chemistry, 2015, 64, 149-164.	5.8	39
167	Platform chemical production from food wastes using a biorefinery concept. Journal of Chemical Technology and Biotechnology, 2015, 90, 1364-1379.	1.6	76
168	Membrane Distillation Bioreactor (MDBR) – A lower Green-House-Gas (GHG) option for industrial wastewater reclamation. Chemosphere, 2015, 140, 129-142.	4.2	48
169	Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere, 2015, 120, 211-219.	4.2	70
170	Renewable Energy Derived from Food Waste and Co-digestion of Food Waste with Waste-Activated Sludge., 2015,, 257-278.		0
171	Enzyme Production from Food Wastes Using a Biorefinery Concept. Waste and Biomass Valorization, 2014, 5, 903-917.	1.8	74
172	A micromechanical model for concrete under static loading. Magazine of Concrete Research, 2014, 66, 913-924.	0.9	2
173	Identification of crack size and orientation in continuous cylindrical structure using macro-fiber composite. Journal of Intelligent Material Systems and Structures, 2014, 25, 596-605.	1.4	8
174	Macro-fiber composite–based structural health monitoring system for axial cracks in cylindrical structures. Journal of Intelligent Material Systems and Structures, 2014, 25, 332-341.	1.4	12
175	Application of constructed wetlands for wastewater treatment in developing countries – A review of recent developments (2000–2013). Journal of Environmental Management, 2014, 141, 116-131.	3.8	264
176	Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Research, 2014, 6, 186-193.	2.4	66
177	Determination of fracture energy of ultra high strength concrete. Engineering Fracture Mechanics, 2014, 131, 602-615.	2.0	23
178	Dissolved Methane: A Hurdle for Anaerobic Treatment of Municipal Wastewater. Environmental Science & Scien	4.6	100
179	Removal of biofilms by intermittent low-intensity ultrasonication triggered bursting of microbubbles. Biofouling, 2014, 30, 359-365.	0.8	27
180	Bioconversion of food waste to energy: A review. Fuel, 2014, 134, 389-399.	3.4	534

#	Article	IF	Citations
181	Uptake and accumulation of CuO nanoparticles and CdS/ZnS quantum dot nanoparticles by Schoenoplectus tabernaemontani in hydroponic mesocosms. Ecological Engineering, 2014, 70, 114-123.	1.6	43
182	Transparent exopolymer particles (TEP) and their potential effect on membrane biofouling. Applied Microbiology and Biotechnology, 2013, 97, 5705-5710.	1.7	34
183	Removal and transformation of organic matters in domestic wastewater during lab-scale chemically enhanced primary treatment and a trickling filter treatment. Journal of Environmental Sciences, 2013, 25, 59-68.	3.2	13
184	Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process. Journal of Membrane Science, 2013, 438, 140-152.	4.1	65
185	Dependence of structure stability and integrity of aerobic granules on ATP and cell communication. Applied Microbiology and Biotechnology, 2013, 97, 5105-5112.	1.7	27
186	Alginate block fractions and their effects on membrane fouling. Water Research, 2013, 47, 6618-6627.	5.3	57
187	The effect of pH on the efficiency of an SBR processing piggery wastewater. Biotechnology and Bioprocess Engineering, 2013, 18, 1230-1237.	1.4	15
188	Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation. Desalination, 2013, 323, 39-47.	4.0	175
189	New insights into membrane fouling in submerged MBR under sub-critical flux condition. Bioresource Technology, 2013, 137, 404-408.	4.8	27
190	Importance of extracellular proteins in maintaining structural integrity of aerobic granules. Colloids and Surfaces B: Biointerfaces, 2013, 112, 435-440.	2.5	54
191	pH-Dependent Transformation of Ag Nanoparticles in Anaerobic Processes. Environmental Science & Environmental	4.6	21
192	Cleaning of biologically fouled membranes with self-collapsing microbubbles. Biofouling, 2013, 29, 69-76.	0.8	13
193	Degradation of paracetamol by <i>Pseudomonas aeruginosa </i> Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 791-799.	0.9	48
194	Integrated coagulation-trickling filter–ultrafiltration processes for domestic wastewater treatment and reclamation. Water Science and Technology, 2012, 65, 1599-1605.	1.2	10
195	Effect of Pharmaceuticals on the Performance of a Novel Osmotic Membrane Bioreactor (OMBR). Separation Science and Technology, 2012, 47, 543-554.	1.3	55
196	Analysis of Salt Accumulation in a Forward Osmosis System. Separation Science and Technology, 2012, 47, 1837-1848.	1.3	14
197	Detection and monitoring of axial cracks on cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite. , 2012, , .		3
198	Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Research, 2012, 46, 5499-5508.	5.3	161

#	Article	IF	Citations
199	Biofilm detachment by self-collapsing air microbubbles: a potential chemical-free cleaning technology for membrane biofouling. Journal of Materials Chemistry, 2012, 22, 2203-2207.	6.7	47
200	Comparative study of electromechanical impedance and Lamb wave techniques for fatigue crack detection and monitoring in metallic structures. Proceedings of SPIE, 2012, , .	0.8	2
201	State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122, 217-222.	4.8	88
202	Chemically inhibited ATP synthesis promoted detachment of different-age biofilms from membrane surface. Applied Microbiology and Biotechnology, 2012, 95, 1073-1082.	1.7	16
203	Mathematical modeling of biofilmâ€covered granular activated carbon: a review. Journal of Chemical Technology and Biotechnology, 2012, 87, 1513-1520.	1.6	15
204	Roles of ATP-dependent N-acylhomoserine lactones (AHLs) and extracellular polymeric substances (EPSs) in aerobic granulation. Chemosphere, 2012, 88, 1058-1064.	4.2	59
205	Microbial community and biomass characteristics associated severe membrane fouling during start-up of a hybrid anoxic–oxic membrane bioreactor. Bioresource Technology, 2012, 103, 43-47.	4.8	38
206	Factors affecting flux performance of forward osmosis systems. Journal of Membrane Science, 2012, 394-395, 151-168.	4.1	118
207	Interval analysis of dynamic response of structures using Laplace transform. Probabilistic Engineering Mechanics, 2012, 29, 32-39.	1.3	21
208	Essential roles of eDNA and Al-2 in aerobic granulation in sequencing batch reactors operated at different settling times. Applied Microbiology and Biotechnology, 2012, 93, 2645-2651.	1.7	25
209	Control and Cleaning of Membrane Biofouling by Energy Uncoupling and Cellular Communication. Environmental Science & Environme	4.6	68
210	High-Performance Anaerobic Granulation Processes for Treatment of Wastewater-Containing Recalcitrant Compounds. Critical Reviews in Environmental Science and Technology, 2011, 41, 1271-1308.	6.6	10
211	Reduced microbial attachment by d-amino acid-inhibited Al-2 and EPS production. Water Research, 2011, 45, 5796-5804.	5.3	52
212	Size-dependent microbial substrate uptake kinetics for aerobic granules. International Journal of Environment and Waste Management, 2011, 7, 58.	0.2	0
213	Study of integration of forward osmosis and biological process: Membrane performance under elevated salt environment. Desalination, 2011, 283, 123-130.	4.0	139
214	Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnology Advances, 2011, 29, 111-123.	6.0	123
215	Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 2011, 84, 1175-1180.	4.2	695
216	d-Amino acid mitigated membrane biofouling and promoted biofilm detachment. Journal of Membrane Science, 2011, 376, 266-274.	4.1	68

#	Article	IF	Citations
217	Microbial characterization of the biofilms developed for treating ampicillin-bearing wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 314-322.	0.9	3
218	Energy uncoupling inhibits aerobic granulation. Applied Microbiology and Biotechnology, 2010, 85, 589-595.	1.7	31
219	Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Applied Microbiology and Biotechnology, 2010, 86, 825-837.	1.7	177
220	Involvement of ATP and autoinducerâ€2 in aerobic granulation. Biotechnology and Bioengineering, 2010, 105, 51-58.	1.7	38
221	Control of microbial attachment by inhibition of ATP and ATPâ€mediated autoinducerâ€2. Biotechnology and Bioengineering, 2010, 107, 31-36.	1.7	19
222	Treatment of ampicillinâ€loaded wastewater by combined adsorption and biodegradation. Journal of Chemical Technology and Biotechnology, 2010, 85, 814-820.	1.6	17
223	Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. Journal of Hazardous Materials, 2010, 179, 875-882.	6.5	59
224	Biological Phosphorus Removal Processes. , 2010, , 497-521.		1
225	Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon. Water Science and Technology, 2010, 61, 927-936.	1.2	127
226	Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review. Water Research, 2010, 44, 21-40.	5.3	231
227	A comparison of membrane fouling under constant and variable organic loadings in submerge membrane bioreactors. Water Research, 2010, 44, 5407-5413.	5.3	36
228	Toxicity effect of phenol on aerobic granules. Environmental Technology (United Kingdom), 2009, 30, 69-74.	1.2	44
229	Aerobic Granulation Technology. , 2009, , 109-128.		6
230	Biological Nitrification and Denitrification Processes. , 2009, , 539-588.		10
231	A simple geometric approach for simplification of Langmuir kinetics for adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349, 78-82.	2.3	3
232	Stoichiometric analysis of dissolved organic carbon flux into storage and growth in aerobic granules culture. Biotechnology Journal, 2009, 4, 238-246.	1.8	2
233	Is the Free Energy Change of Adsorption Correctly Calculated?. Journal of Chemical & Data, 2009, 54, 1981-1985.	1.0	885
234	Dynamic changes in microbial diversity of aerobic granules. World Review of Science, Technology and Sustainable Development, 2009, 6, 166.	0.3	0

#	Article	IF	Citations
235	Principles and Kinetics of Biological Processes. , 2009, , 1-57.		O
236	Reply to "Comments on "Biosorption isotherms, kinetics and thermodynamics―review― Separation and Purification Technology, 2008, 63, 250.	3.9	5
237	Mechanisms of Cd2+, Cu2+ and Ni2+ biosorption by aerobic granules. Separation and Purification Technology, 2008, 58, 400-411.	3.9	97
238	Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 2008, 61, 229-242.	3.9	905
239	A general rate law equation for biosorption. Biochemical Engineering Journal, 2008, 38, 390-394.	1.8	94
240	New insights into pseudo-second-order kinetic equation for adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 275-278.	2.3	206
241	Uncertainty of preset-order kinetic equations in description of biosorption data. Bioresource Technology, 2008, 99, 3309-3312.	4.8	32
242	Is sludge retention time a decisive factor for aerobic granulation in SBR?. Bioresource Technology, 2008, 99, 7672-7677.	4.8	25
243	DO diffusion profile in aerobic granule and its microbiological implications. Enzyme and Microbial Technology, 2008, 43, 349-354.	1.6	49
244	A Generalized Model for Settling Velocity of Aerobic Granular Sludge. Biotechnology Progress, 2008, 21, 621-626.	1.3	33
245	From Langmuir Kinetics to First- and Second-Order Rate Equations for Adsorption. Langmuir, 2008, 24, 11625-11630.	1.6	301
246	Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochemical Engineering Journal, 2007, 35, 174-182.	1.8	180
247	Mechanism of calcium accumulation in acetate-fed aerobic granule. Applied Microbiology and Biotechnology, 2007, 74, 467-473.	1.7	26
248	Biodegradability of extracellular polymeric substances produced by aerobic granules. Applied Microbiology and Biotechnology, 2007, 74, 462-466.	1.7	72
249	Overview of some theoretical approaches for derivation of the Monod equation. Applied Microbiology and Biotechnology, 2007, 73, 1241-1250.	1.7	77
250	Essential Roles of Extracellular Polymeric Substances in Aerobic Granulation. , 2007, , 181-194.		1
251	Selection Pressure Theory for Aerobic Granulation in Sequencing Batch Reactors., 2007,, 85-110.		4
252	Diffusion of Substrate and Oxygen in Aerobic Granules. , 2007, , 131-147.		0

#	Article	IF	CITATIONS
253	Aerobic Granulation at Different Carbon Sources and Concentrations. , 2007, , 1-23.		O
254	Influence of Starvation on Aerobic Granulation. , 2007, , 239-257.		0
255	Filamentous Growth in an Aerobic Granular Sludge SBR. , 2007, , 259-286.		0
256	Roles of SBR Volume Exchange Ratio and Discharge Time in Aerobic Granulation., 2007,, 69-84.		0
257	Aerobic Granulation at Different Settling Times. , 2007, , 51-67.		1
258	Biodegradability of Extracellular Polymeric Substances Produced by Aerobic Granules. , 2007, , 209-222.		0
259	Calcium Accumulation in Acetate-Fed Aerobic Granules. , 2007, , 223-237.		1
260	Internal Structure of Aerobic Granules. , 2007, , 195-208.		0
261	The Essential Role of Cell Surface Hydrophobicity in Aerobic Granulation. , 2007, , 149-180.		0
262	Aerobic Granulation at Different Shear Forces. , 2007, , 25-36.		0
263	Improved Stability of Aerobic Granules by Selecting Slow-Growing Bacteria. , 2007, , 287-299.		0
264	Growth Kinetics of Aerobic Granules. , 2007, , 111-130.		0
265	The role of SBR mixed liquor volume exchange ratio in aerobic granulation. Chemosphere, 2006, 62, 767-771.	4.2	82
266	Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor. Chemosphere, 2006, 63, 926-933.	4.2	51
267	Chapter 8 Nutrient removal by microbial granules. Waste Management Series, 2006, 6, 163-189.	0.0	0
268	Effect of pH on nickel biosorption by aerobic granular sludge. Bioresource Technology, 2006, 97, 359-363.	4.8	100
269	A simple thermodynamic approach for derivation of a general Monod equation for microbial growth. Biochemical Engineering Journal, 2006, 31, 102-105.	1.8	37
270	Some consideration on the Langmuir isotherm equation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 274, 34-36.	2.3	186

#	Article	IF	CITATIONS
271	The influence of short-term starvation on aerobic granules. Process Biochemistry, 2006, 41, 2373-2378.	1.8	45
272	Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 2006, 24, $115-127$.	6.0	293
273	Chapter 5 Factors affecting aerobic granulation. Waste Management Series, 2006, 6, 99-114.	0.0	3
274	Chapter 4 Mechanisms of aerobic granulation. Waste Management Series, 2006, , 85-l.	0.0	0
275	Chapter 11 Biosorption properties of aerobic granules. Waste Management Series, 2006, , 245-267.	0.0	2
276	Diffusion of substrate and oxygen in aerobic granule. Biochemical Engineering Journal, 2005, 27, 45-52.	1.8	76
277	Responses of sludge flocs to shear strength. Process Biochemistry, 2005, 40, 3213-3217.	1.8	23
278	Relationship between size and mass transfer resistance in aerobic granules. Letters in Applied Microbiology, 2005, 40, 312-315.	1.0	56
279	A unified theory for upscaling aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 2005, 23, 335-344.	6.0	45
280	Influence of substrate surface loading on the kinetic behaviour of aerobic granules. Applied Microbiology and Biotechnology, 2005, 67, 484-488.	1.7	14
281	Selection pressure-driven aerobic granulation in a sequencing batch reactor. Applied Microbiology and Biotechnology, 2005, 67, 26-32.	1.7	153
282	Distribution of EPS and cell surface hydrophobicity in aerobic granules. Applied Microbiology and Biotechnology, 2005, 69, 469-473.	1.7	180
283	Initial conditions-dependent growth kinetics in microbial batch culture. Process Biochemistry, 2005, 40, 155-160.	1.8	8
284	The elemental compositions of P-accumulating microbial granules developed in sequencing batch reactors. Process Biochemistry, 2005, 40, 3258-3262.	1.8	25
285	Effect of Substrate Nitrogen/Chemical Oxygen Demand Ratio on the Formation of Aerobic Granules. Journal of Environmental Engineering, ASCE, 2005, 131, 86-92.	0.7	53
286	Derivation of a General Adsorption Isotherm Model. Journal of Environmental Engineering, ASCE, 2005, 131, 1466-1468.	0.7	9
287	Denitrification on poly- \hat{l}^2 -hydroxybutyrate in microbial granular sludge sequencing batch reactor. Water Research, 2005, 39, 1503-1510.	5.3	91
288	Growth kinetics of aerobic granules developed in sequencing batch reactors. Letters in Applied Microbiology, 2004, 38, 106-112.	1.0	59

#	Article	IF	Citations
289	State of the art of biogranulation technology for wastewater treatment. Biotechnology Advances, 2004, 22, 533-563.	6.0	670
290	Respirometric Activities of Heterotrophic and Nitrifying Populations in Aerobic Granules Developed at Different Substrate N/COD Ratios. Current Microbiology, 2004, 49, 42-6.	1.0	31
291	A thermodynamic interpretation of cell hydrophobicity in aerobic granulation. Applied Microbiology and Biotechnology, 2004, 64, 410-415.	1.7	31
292	The effects of extracellular polymeric substances on the formation and stability of biogranules. Applied Microbiology and Biotechnology, 2004, 65, 143-8.	1.7	389
293	Inhibition of free ammonia to the formation of aerobic granules. Biochemical Engineering Journal, 2004, 17, 41-48.	1.8	134
294	Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry, 2004, 39, 579-584.	1.8	163
295	A theoretical model for biosorption of cadmium, zinc and copper by aerobic granules based on initial conditions. Journal of Chemical Technology and Biotechnology, 2004, 79, 982-986.	1.6	8
296	Cell hydrophobicity is a triggering force of biogranulation. Enzyme and Microbial Technology, 2004, 34, 371-379.	1.6	127
297	Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering Journal, 2004, 21, 47-52.	1.8	184
298	Comments on "effect of extended idle conditions on structure and activity of granular activated sludge―by Zhu and Wilderer. Water Research, 2004, 38, 3465-3466.	5.3	10
299	Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. Journal of Biotechnology, 2004, 108, 161-169.	1.9	184
300	The influence of cell and substratum surface hydrophobicities on microbial attachment. Journal of Biotechnology, 2004, 110, 251-256.	1.9	170
301	Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnology Letters, 2003, 25, 95-99.	1.1	134
302	The Role of Cell Hydrophobicity in the Formation of Aerobic Granules. Current Microbiology, 2003, 46, 270-274.	1.0	82
303	A Thermodynamic Interpretation of the Monod Equation. Current Microbiology, 2003, 46, 233-234.	1.0	25
304	Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Applied Microbiology and Biotechnology, 2003, 61, 556-561.	1.7	49
305	Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Applied Microbiology and Biotechnology, 2003, 62, 430-435.	1.7	107
306	Biosorption kinetics of cadmium(II) on aerobic granular sludge. Process Biochemistry, 2003, 38, 997-1001.	1.8	86

#	Article	IF	CITATIONS
307	A balanced model for biofilms developed at different growth and detachment forces. Process Biochemistry, 2003, 38, 1761-1765.	1.8	29
308	Metabolic uncouplers reduce excess sludge production in an activated sludge process. Process Biochemistry, 2003, 38, 1373-1377.	1.8	57
309	A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. Journal of Biotechnology, 2003, 102, 233-239.	1.9	167
310	Chemically reduced excess sludge production in the activated sludge process. Chemosphere, 2003, 50, 1-7.	4.2	209
311	Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Research, 2003, 37, 661-673.	5.3	250
312	A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. Journal of Biotechnology, 2003, 106, 77-86.	1.9	121
313	Kinetic Responses of Activated Sludge Microorganisms to Individual and Joint Copper and Zinc. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 353-360.	0.9	9
314	Substrate concentrationâ€independent aerobic granulation in sequential aerobic sludge blanket reactor. Environmental Technology (United Kingdom), 2003, 24, 1235-1242.	1.2	87
315	Characteristics of Aerobic Granules Grown on Glucose and Acetate in Sequential Aerobic Sludge Blanket Reactors. Environmental Technology (United Kingdom), 2002, 23, 931-936.	1.2	147
316	The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 2002, 36, 1653-1665.	5.3	791
317	Utilization of a metabolic uncoupler, $3,3\hat{a}\in^2,4\hat{a}\in^2,5$ -tetrachlorosalicylanilide (TCS) to reduce sludge growth in activated sludge culture. Water Research, 2002, 36, 2077-2083.	5.3	80
318	Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Applied Microbiology and Biotechnology, 2002, 59, 332-337.	1.7	92
319	High organic loading influences the physical characteristics of aerobic sludge granules. Letters in Applied Microbiology, 2002, 34, 407-412.	1.0	325
320	Influence of phenol on cultures of acetate-fed aerobic granular sludge. Letters in Applied Microbiology, 2002, 35, 162-165.	1.0	11
321	Aerobic granules: a novel zinc biosorbent. Letters in Applied Microbiology, 2002, 35, 548-551.	1.0	40
322	Anaerobic granulation technology for wastewater treatment. World Journal of Microbiology and Biotechnology, 2002, 18, 99-113.	1.7	110
323	The accumulation of fixed biomass increases the observed growth yield of a nitrifying biofilm. Biotechnology Letters, 2002, 24, 391-394.	1.1	1
324	FACTORS AFFECTING NITRITE BUILD-UP IN NITRIFYING BIOFILM REACTOR. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2001, 36, 1027-1040.	0.9	27

#	Article	IF	Citations
325	The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, 2001, 57, 227-233.	1.7	388
326	The role of cellular polysaccharides in the formation and stability of aerobic granules. Letters in Applied Microbiology, 2001, 33, 222-226.	1.0	215
327	Metabolic response of biofilm to shear stress in fixed-film culture. Journal of Applied Microbiology, 2001, 90, 337-342.	1.4	111
328	Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Journal of Applied Microbiology, 2001, 91, 168-175.	1.4	335
329	Detachment forces and their influence on the structure and metabolic behaviour of biofilms. World Journal of Microbiology and Biotechnology, 2001, 17, 111-117.	1.7	57
330	Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances, 2001, 19, 97-107.	6.0	199
331	A kinetic model for energy spilling-associated product formation in substrate-sufficient continuous culture. Journal of Applied Microbiology, 2000, 88, 663-668.	1.4	8
332	Title is missing!. Biotechnology Letters, 2000, 22, 1521-1525.	1.1	11
333	Effect of initial ratio of heavy metal to biomass on growth yield in batch culture of activated sludge. Toxicological and Environmental Chemistry, 2000, 74, 9-18.	0.6	2
334	Interrelationship of DOC Distribution in Metabolic Network to Growth Yield in Batch Culture. Journal of Environmental Engineering, ASCE, 2000, 126, 89-92.	0.7	1
335	The So/Xo-dependent dissolved organic carbon distribution in substrate-sufficient batch culture of activated sludge. Water Research, 2000, 34, 1645-1651.	5.3	10
336	Modeling of Energy Spilling in Substrate-Sufficient Cultures. Journal of Environmental Engineering, ASCE, 1999, 125, 508-513.	0.7	12
337	A kinetic model incorporating energy spilling for substrate removal in substrate-sufficient batch culture of activated sludge. Applied Microbiology and Biotechnology, 1999, 52, 647-651.	1.7	10
338	Model of dissolved organic carbon distribution for substrate-sufficient continuous culture., 1999, 65, 474-479.		5
339	Effect of the S 0 / X 0 ratio on energy uncoupling in substrate-sufficient batch culture of activated sludge. Water Research, 1998, 32, 2883-2888.	5.3	31
340	Estimating Minimum Fixed Biomass Concentration and Active Thickness of Nitrifying Biofilm. Journal of Environmental Engineering, ASCE, 1997, 123, 198-202.	0.7	32
341	Model of energy uncoupling for substrate-sufficient culture. , 1997, 55, 571-576.		21
342	Specific activity of nitrifying biofilm in water nitrification process. Water Research, 1996, 30, 1645-1650.	5.3	46

Yu Lıu

#	Article	IF	CITATION
343	Bioenergetic interpretation on the SOXO ratio in substrate-sufficient batch culture. Water Research, 1996, 30, 2766-2770.	5.3	54
344	Adhesion kinetics of nitrifying bacteria on various thermoplastic supports. Colloids and Surfaces B: Biointerfaces, 1995, 5, 213-219.	2.5	33
345	Response pattern of nitrifying biofilm reactor to shock loading. Biotechnology Letters, 1994, 16, 655-660.	1.1	7
346	Some observations on free ammonia inhibition to Nitrobacter in nitrifying biofilm reactor. Biotechnology Letters, 1994, 16, 309-314.	1.1	12
347	Kinetic behaviors of nitrifying biofblm growth in wastewater nitrification process. Environmental Technology (United Kingdom), 1994, 15, 1001-1013.	1.2	29
348	Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste. Biofuel Research Journal, 0, , 98-105.	7.2	33
349	Chemical Cleaning-Triggered Release of Dissolved Organic Matter from a Sludge Suspension in a Ceramic Membrane Bioreactor: A Potential Membrane Foulant. ACS ES&T Water, 0, , .	2.3	2