Rainer Ebel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7038133/publications.pdf

Version: 2024-02-01

		117625	95266
79	4,885	34	68
papers	citations	h-index	g-index
89	89	89	5133
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhibition of the Quorum Sensing System, Elastase Production and Biofilm Formation in Pseudomonas aeruginosa by Psammaplin A and Bisaprasin. Molecules, 2022, 27, 1721.	3.8	9
2	Fosbergenone: 3-[2-(1,2,5,5-Tetramethyl-7-oxo-1,2,3,4,4a,5,6,7-octahydronaphthalen-1-yl)ethyl]-2,5-dihydrofuran-2-one. MolBank, 2022, 2022, M1391.	0.5	1
3	Discovery and Biosynthetic Investigation of a New Antibacterial Dehydrated Nonâ€Ribosomal Tripeptide. Angewandte Chemie, 2021, 133, 3266-3274.	2.0	5
4	Discovery and Biosynthetic Investigation of a New Antibacterial Dehydrated Nonâ€Ribosomal Tripeptide. Angewandte Chemie - International Edition, 2021, 60, 3229-3237.	13.8	25
5	Antimicrobial and Antibiofilm Activities of the Fungal Metabolites Isolated from the Marine Endophytes Epicoccum nigrum M13 and Alternaria alternata 13A. Marine Drugs, 2021, 19, 232.	4.6	35
6	Stereochemical assignment of three new benzylisoquinoline alkaloids from $\langle i \rangle$ Phaeanthus vietnamensis $\langle i \rangle$ by NMR study combined with CD spectroscopy. Magnetic Resonance in Chemistry, 2021, 59, 1160-1164.	1.9	0
7	Isolation and characterization of new phenolic siderophores with antimicrobial properties from <i>Pseudomonas</i> sp. UIAU-6B. Beilstein Journal of Organic Chemistry, 2021, 17, 2390-2398.	2.2	3
8	Assessment of Arabian Gulf Seaweeds from Kuwait as Sources of Nutritionally Important Polyunsaturated Fatty Acids (PUFAs). Foods, 2021, 10, 2442.	4.3	9
9	Heavy Metals, Proximate Analysis and Brine Shrimp Lethality of Vernonia amygdalina and Ocimum gratissimum Growing in Crude Oil-Rich Delta State, Nigeria. Foods, 2021, 10, 2913.	4.3	2
10	Cutting the Gordian knot: early and complete amino acid sequence confirmation of class II lasso peptides by HCD fragmentation. Journal of Antibiotics, 2020, 73, 772-779.	2.0	3
11	Screening Fungal Endophytes Derived from Under-Explored Egyptian Marine Habitats for Antimicrobial and Antioxidant Properties in Factionalised Textiles. Microorganisms, 2020, 8, 1617.	3.6	19
12	Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae). Scientific Reports, 2020, 10, 8279.	3.3	9
13	Downsizing Class II Lasso Peptides: Genome Mining-Guided Isolation of Huascopeptin Containing the First Gly1-Asp7 Macrocycle. Journal of Organic Chemistry, 2020, 85, 1661-1667.	3.2	14
14	A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules, 2020, 25, 256.	3.8	31
15	Signalling and Bioactive Metabolites from Streptomyces sp. RK44. Molecules, 2020, 25, 460.	3.8	15
16	Accramycin A, a New Aromatic Polyketide, from the Soil Bacterium, Streptomyces sp. MA37. Molecules, 2019, 24, 3384.	3.8	31
17	Heterologous Expression of a Cryptic Gene Cluster from Streptomyces leeuwenhoekii C34 ^T Yields a Novel Lasso Peptide, Leepeptin. Applied and Environmental Microbiology, 2019, 85,	3.1	20
18	An online resource for marine fungi. Fungal Diversity, 2019, 96, 347-433.	12.3	133

#	Article	IF	CITATIONS
19	LC-HRMS-Database Screening Metrics for Rapid Prioritization of Samples to Accelerate the Discovery of Structurally New Natural Products. Journal of Natural Products, 2019, 82, 211-220.	3.0	22
20	Zebrafish-Based Discovery of Antiseizure Compounds from the Red Sea: Pseurotin A ₂ and Azaspirofuran A. ACS Chemical Neuroscience, 2018, 9, 1652-1662.	3.5	35
21	Asenjonamides A–C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soil. Journal of Antibiotics, 2018, 71, 425-431.	2.0	36
22	Isolation and anti-HIV-1 integrase activity of lentzeosides A–F from extremotolerant lentzea sp. H45, a strain isolated from a high-altitude Atacama Desert soil. Journal of Antibiotics, 2017, 70, 448-453.	2.0	31
23	Targeted Dereplication of Microbial Natural Products by High-Resolution MS and Predicted LC Retention Time. Journal of Natural Products, 2017, 80, 1370-1377.	3.0	27
24	Does Osmotic Stress Affect Natural Product Expression in Fungi?. Marine Drugs, 2017, 15, 254.	4.6	34
25	Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation. Frontiers in Microbiology, 2017, 8, 1284.	3.5	129
26	Targeted Dereplication of Microbial Natural Products by High-Resolution MS and Predicted LC-Retention Time. Planta Medica International Open, 2017, 4, .	0.5	0
27	Spongionella Secondary Metabolites, Promising Modulators of Immune Response through CD147 Receptor Modulation. Frontiers in Immunology, 2016, 7, 452.	4.8	11
28	Solamargine production by a fungal endophyte of <i>Solanum nigrum</i> . Journal of Applied Microbiology, 2016, 120, 900-911.	3.1	42
29	Identification of Spongionella compounds as cyclosporine A mimics. Pharmacological Research, 2016, 107, 407-414.	7.1	15
30	$R\tilde{A}^{1}\!\!/_{c}$ cktitelbild: Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins (Angew. Chem. 43/2015). Angewandte Chemie, 2015, 127, 13016-13016.	2.0	0
31	Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins. Angewandte Chemie - International Edition, 2015, 54, 12697-12701.	13.8	46
32	Biosynthesis of Neocarazostatin A Reveals the Sequential Carbazole Prenylation and Hydroxylation in the Tailoring Steps. Chemistry and Biology, 2015, 22, 1633-1642.	6.0	39
33	Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology, 2015, 93, 285-293.	4.1	54
34	The Streptomyces metabolite anhydroexfoliamycin ameliorates hallmarks of Alzheimer's disease in vitro and in vivo. Neuroscience, 2015, 305, 26-35.	2.3	28
35	Spongionella Secondary Metabolites Protect Mitochondrial Function in Cortical Neurons against Oxidative Stress. Marine Drugs, 2014, 12, 700-718.	4.6	36
36	New Rocaglamide Derivatives from Vietnamese <i>Aglaia</i> species. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	2

#	Article	IF	Citations
37	Decorosides A and B, Cytotoxic Flavonoid Glycosides from the Leaves of Rhododendron decorum. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	3
38	<i><scp>H</scp>ymenoscyphus pseudoalbidus</i> and <i><scp>H</scp>ymenoscyphus albidus</i> viridiol concentration and virulence do not correlate. Forest Pathology, 2014, 44, 39-44.	1.1	23
39	Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Advances, 2013, 3, 14444.	3.6	104
40	20 Natural products from marine-derived fungi. , 2012, , 411-440.		11
41	Pullularins E and F, Two New Peptides from the Endophytic Fungus Bionectria ochroleuca Isolated from the Mangrove Plant Sonneratia caseolaris. Marine Drugs, 2012, 10, 1081-1091.	4.6	68
42	Secondary metabolites of fungi from marine habitats. Natural Product Reports, 2011, 28, 290.	10.3	563
43	Lecythomycin, a New Macrolactone Glycoside from the Endophytic Fungus Lecythophora sp. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	2
44	Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica. World Journal of Microbiology and Biotechnology, 2011, 27, 571-577.	3.6	53
45	Ophiobolin Sesterterpenoids and Pyrrolidine Alkaloids from the Spongeâ€Derived Fungus <i>Aspergillus ustus</i> . Helvetica Chimica Acta, 2011, 94, 623-631.	1.6	41
46	Natural Product Diversity from Marine Fungi. , 2010, , 223-262.		9
47	Callyaerins A–F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic and Medicinal Chemistry, 2010, 18, 4947-4956.	3.0	82
48	Terpenes from Marine-Derived Fungi. Marine Drugs, 2010, 8, 2340-2368.	4.6	87
49	Dibenzofurans from the marine sponge-derived ascomycete Super1F1-09. Botanica Marina, 2010, 53, .	1.2	19
50	Antimicrobial activities of marine fungi from Malaysia. Botanica Marina, 2010, 53, .	1.2	12
51	Drimane Sesquiterpenoids from the Fungus <i>Aspergillus ustus</i> Isolated from the Marine Sponge <i>Suberites domuncula</i> Journal of Natural Products, 2009, 72, 1585-1588.	3.0	76
52	Xanalteric Acids I and II and Related Phenolic Compounds from an Endophytic <i>Alternaria </i> sp. Isolated from the Mangrove Plant <i>Sonneratia alba </i> Journal of Natural Products, 2009, 72, 2053-2057.	3.0	138
53	Bioactive Metabolites from the Endophytic Fungus <i>Stemphylium globuliferum</i> Isolated from <i>Mentha pulegium</i> . Journal of Natural Products, 2009, 72, 626-631.	3.0	141
54	A New Tetrahydrofuran Derivative from the Endophytic Fungus Chaetomium sp. Isolated from Otanthus maritimus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2009, 64, 350-354.	1.4	6

#	Article	IF	Citations
55	Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry, 2008, 69, 1716-1725.	2.9	150
56	Cytotoxic Metabolites from the Fungal Endophyte <i>Alternaria</i> sp. and Their Subsequent Detection in Its Host Plant <i>Polygonum senegalense</i> Journal of Natural Products, 2008, 71, 972-980.	3.0	226
57	Sponge-associated fungi and their bioactive compounds: the <i>Suberites</i> case. Botanica Marina, 2008, 51, 209-218.	1.2	71
58	Diacarperoxides, Norterpene Cyclic Peroxides from the Sponge <i>Diacarnus megaspinorhabdosa</i> Journal of Natural Products, 2008, 71, 1358-1364.	3.0	37
59	New Purine Derivatives from the Marine Sponge Petrosia nigricans. Natural Product Communications, 2008, 3, 1934578X0800301.	0.5	2
60	Major Constituents of the Predominant Endophytic Fungi from the Nigerian Plants <i>Bryophyllum Pinnatum, Morinda Lucida</i> and <i>Jathropha Gossypiifolia</i> Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	3
61	Endophytic Fungi for Pest and Disease Management. , 2008, , 365-387.		10
62	Antifouling Activity of Bromotyrosine-Derived Sponge Metabolites and Synthetic Analogues. Marine Biotechnology, 2007, 9, 776-785.	2.4	77
63	Chaetopyranin, a Benzaldehyde Derivative, and Other Related Metabolites fromChaetomium globosum, an Endophytic Fungus Derived from the Marine Red AlgaPolysiphonia urceolata. Journal of Natural Products, 2006, 69, 1622-1625.	3.0	254
64	Kahalalide Derivatives from the Indian Sacoglossan MolluskElysiagrandifolia. Journal of Natural Products, 2006, 69, 1547-1553.	3.0	117
65	Activated Chemical Defense in Aplysina Sponges Revisited. Journal of Chemical Ecology, 2006, 32, 97-123.	1.8	94
66	Sequestration and Possible Role of Dietary Alkaloids in the Sponge-Feeding Mollusk Tylodina perversa. Progress in Molecular and Subcellular Biology, 2006, 43, 261-275.	1.6	8
67	New Natural Products from the Sponge-Derived FungusAspergillus niger. Journal of Natural Products, 2004, 67, 1532-1543.	3.0	153
68	New Communesin Derivatives from the FungusPenicilliumsp.Derived from the Mediterranean SpongeAxinellaverrucosa. Journal of Natural Products, 2004, 67, 78-81.	3.0	176
69	Chemical Defense of Mediterranean Sponges Aplysina cavernicola and Aplysina aerophoba. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 113-122.	1.4	118
70	Bioactive Natural Products from Marine Invertebrates and Associated Fungi. Progress in Molecular and Subcellular Biology, 2003, 37, 117-142.	1.6	36
71	Drugs from the Sea - Opportunities and Obstacles. Marine Drugs, 2003, 1, 5-17.	4.6	87
72	Sequestration of Dietary Alkaloids by the Spongivorous Marine Mollusc Tylodina perversa. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 426-432.	1.4	20

#	Article	IF	CITATION
73	New Metabolites from Sponge-Derived Fungi Curvularia lunata and Cladosporium herbarum. Journal of Natural Products, 2002, 65, 730-733.	3.0	132
74	Drugs from the seas - current status and microbiological implications. Applied Microbiology and Biotechnology, 2002, 59, 125-134.	3.6	417
75	New methoxylated aryltetrahydronaphthalene lignans and a norlignan from Aglaia cordata. Tetrahedron Letters, 2002, 43, 5783-5787.	1.4	30
76	Hortein, a New Natural Product from the FungusHortaeawerneckiiAssociated with the SpongeAplysinaaerophoba. Journal of Natural Products, 2001, 64, 651-652.	3.0	43
77	Organ-specific distribution of dietary alkaloids in the marine opisthobranch Tylodina perversa. Biochemical Systematics and Ecology, 1999, 27, 769-777.	1.3	25
78	Wound Activation of Protoxins in Marine Sponge Aplysina aerophoba. Journal of Chemical Ecology, 1997, 23, 1451-1462.	1.8	104
79	Defense metabolites from the marine sponge Verongia aerophoba. Biochemical Systematics and Ecology, 1996, 24, 1-12.	1.3	72