
Kim E Hammond-Kosack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7036827/publications.pdf Version: 2024-02-01

KIM E HAMMOND-KOSACK

#	Article	IF	CITATIONS
1	WAKsing plant immunity, waning diseases. Journal of Experimental Botany, 2022, 73, 22-37.	4.8	23
2	Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Research, 2022, 50, D996-D1003.	14.5	141
3	PHI-base in 2022: a multi-species phenotype database for Pathogen–Host Interactions. Nucleic Acids Research, 2022, 50, D837-D847.	14.5	53
4	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
5	The vesicular trafficking system component MIN7 is required for minimizing <i>Fusarium graminearum</i> infection. Journal of Experimental Botany, 2021, 72, 5010-5023.	4.8	7
6	Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions. Scientific Reports, 2021, 11, 13495.	3.3	11
7	Take-All Disease: New Insights into an Important Wheat Root Pathogen. Trends in Plant Science, 2021, 26, 836-848.	8.8	20
8	Exploring the diversity of promoter and 5′UTR sequences in ancestral, historic and modern wheat. Plant Biotechnology Journal, 2021, 19, 2469-2487.	8.3	4
9	PHI-base: the pathogen–host interactions database. Nucleic Acids Research, 2020, 48, D613-D620.	14.5	145
10	Ensembl Genomes 2020—enabling non-vertebrate genomic research. Nucleic Acids Research, 2020, 48, D689-D695.	14.5	416
11	Proteinaceous effector discovery and characterization in filamentous plant pathogens. Molecular Plant Pathology, 2020, 21, 1353-1376.	4.2	41
12	Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biology, 2020, 124, 753-765.	2.5	19
13	Genome Sequence of Fusarium graminearum Strain CML3066, Isolated from a Wheat Spike in Southern Brazil. Microbiology Resource Announcements, 2020, 9, .	0.6	1
14	sRNA Profiling Combined With Gene Function Analysis Reveals a Lack of Evidence for Cross-Kingdom RNAi in the Wheat – Zymoseptoria tritici Pathosystem. Frontiers in Plant Science, 2019, 10, 892.	3.6	51
15	Non-canonical fungal G-protein coupled receptors promote Fusarium head blight on wheat. PLoS Pathogens, 2019, 15, e1007666.	4.7	34
16	PHI-Nets: A Network Resource for Ascomycete Fungal Pathogens to Annotate and Identify Putative Virulence Interacting Proteins and siRNA Targets. Frontiers in Microbiology, 2019, 10, 2721.	3.5	8
17	Saving plants from disease. , 2019, , .		0
18	Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research, 2018, 46, D802-D808.	14.5	489

#	Article	IF	CITATIONS
19	Elite UK winter wheat cultivars differ in their ability to support the colonization of beneficial root-infecting fungi. Journal of Experimental Botany, 2018, 69, 3103-3115.	4.8	10
20	Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb). Fungal Genetics and Biology, 2018, 115, 90-93.	2.1	15
21	Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nature Genetics, 2018, 50, 368-374.	21.4	215
22	Inter-genome comparison of the Quorn fungus Fusarium venenatum and the closely related plant infecting pathogen Fusarium graminearum. BMC Genomics, 2018, 19, 269.	2.8	28
23	A review of wheat diseases—a field perspective. Molecular Plant Pathology, 2018, 19, 1523-1536.	4.2	375
24	RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals. Pest Management Science, 2018, 74, 790-799.	3.4	103
25	Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat. Scientific Reports, 2018, 8, 17069.	3.3	9
26	Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Scientific Reports, 2018, 8, 9550.	3.3	12
27	The adaptation of Fusarium culmorum to DMI Fungicides Is Mediated by Major Transcriptome Modifications in Response to Azole Fungicide, Including the Overexpression of a PDR Transporter (FcABC1). Frontiers in Microbiology, 2018, 9, 1385.	3.5	50
28	<i>Foxtail mosaic virus</i> : A Viral Vector for Protein Expression in Cereals. Plant Physiology, 2018, 177, 1352-1367.	4.8	85
29	PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database. Nucleic Acids Research, 2017, 45, D604-D610.	14.5	231
30	Annotation of Fusarium graminearum (PH-1) Version 5.0. Genome Announcements, 2017, 5, .	0.8	18
31	A spatial temporal analysis of the <i>Fusarium graminearum</i> transcriptome during symptomless and symptomatic wheat infection. Molecular Plant Pathology, 2017, 18, 1295-1312.	4.2	64
32	<i>mlo</i> â€based powdery mildew resistance in hexaploid bread wheat generated by a nonâ€ŧransgenic <scp>TILLING</scp> approach. Plant Biotechnology Journal, 2017, 15, 367-378.	8.3	163
33	The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens. Genome Biology and Evolution, 2017, 9, 593-618.	2.5	187
34	A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces. PLoS Pathogens, 2017, 13, e1006672.	4.7	54
35	The genome of the emerging barley pathogen Ramularia collo-cygni. BMC Genomics, 2016, 17, 584.	2.8	36
36	Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base. Frontiers in Plant Science, 2016, 7, 641.	3.6	25

#	Article	IF	CITATIONS
37	First Draft Genome Sequence of a UK Strain (UK99) of <i>Fusarium culmorum</i> . Genome Announcements, 2016, 4, .	0.8	27
38	GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease. BMC Bioinformatics, 2016, 17, 463.	2.6	7
39	Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen. Scientific Reports, 2016, 6, 29905.	3.3	46
40	PhytoPath: an integrative resource for plant pathogen genomics. Nucleic Acids Research, 2016, 44, D688-D693.	14.5	42
41	The trans-kingdom identification of negative regulators of pathogen hypervirulence. FEMS Microbiology Reviews, 2016, 40, 19-40.	8.6	16
42	Searching for Novel Targets to Control Wheat Head Blight Disease—I-Protein Identification, 3D Modeling and Virtual Screening. Advances in Microbiology, 2016, 06, 811-830.	0.6	3
43	An analysis of <scp><i>P</i></scp> <i>seudomonas</i> genomic diversity in takeâ€all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environmental Microbiology, 2015, 17, 4764-4778.	3.8	48
44	Using the pathogen-host interactions database (PHI-base) to investigate plant pathogen genomes and genes implicated in virulence. Frontiers in Plant Science, 2015, 6, 605.	3.6	31
45	Functional analysis of a <scp>W</scp> heat <scp>H</scp> omeodomain protein, <scp><scp>TaR1</scp></scp> , reveals that host chromatin remodelling influences the dynamics of the switch to necrotrophic growth in the phytopathogenic fungus <i><scp>Z</scp>ymoseptoria tritici</i> . New Phytologist, 2015, 206, 598-605.	7.3	16
46	Transcriptome and Metabolite Profiling of the Infection Cycle of <i>Zymoseptoria tritici</i> on Wheat Reveals a Biphasic Interaction with Plant Immunity Involving Differential Pathogen Chromosomal Contributions and a Variation on the Hemibiotrophic Lifestyle Definition Â. Plant Physiology, 2015, 167, 1158-1185.	4.8	301
47	Analysis of cytochrome b5 reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Fungal Genetics and Biology, 2015, 82, 69-84.	2.1	21
48	In Planta Transient Expression Systems for Monocots. , 2015, , 391-422.		8
49	Whole-genome analysis of Fusarium graminearum insertional mutants identifies virulence associated genes and unmasks untagged chromosomal deletions. BMC Genomics, 2015, 16, 261.	2.8	18
50	Host to a Stranger: Arabidopsis and Fusarium Ear Blight. Trends in Plant Science, 2015, 20, 651-663.	8.8	17
51	The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics, 2015, 16, 544.	2.8	190
52	The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Research, 2015, 43, D645-D655.	14.5	202
53	Deregulation of Plant Cell Death Through Disruption of Chloroplast Functionality Affects Asexual Sporulation of <i>Zymoseptoria tritici</i> on Wheat. Molecular Plant-Microbe Interactions, 2015, 28, 590-604.	2.6	27
54	An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS ONE, 2015, 10, e0130534.	2.5	72

#	Article	IF	CITATIONS
55	Mutations in the Arabidopsis homoserine kinase gene DMR1 confer enhanced resistance to Fusarium culmorum and F. graminearum. BMC Plant Biology, 2014, 14, 317.	3.6	19
56	<i>Mycosphaerella graminicola</i> LysM Effector-Mediated Stealth Pathogenesis Subverts Recognition Through Both CERK1 and CEBiP Homologues in Wheat. Molecular Plant-Microbe Interactions, 2014, 27, 236-243.	2.6	152
57	Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species. BMC Plant Biology, 2014, 14, 212.	3.6	26
58	Genomic clustering and co-regulation of transcriptional networks in the pathogenic fungus Fusarium graminearum. BMC Systems Biology, 2013, 7, 52.	3.0	29
59	Exploitation of genomics in fungicide research: current status and future perspectives. Molecular Plant Pathology, 2013, 14, 197-210.	4.2	61
60	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	2.2	219
61	Characterization of the sterol 14αâ€demethylases of <i>Fusarium graminearum</i> identifies a novel genusâ€specific <scp>CYP</scp> 51 function. New Phytologist, 2013, 198, 821-835.	7.3	146
62	Network-Based Data Integration for Selecting Candidate Virulence Associated Proteins in the Cereal Infecting Fungus Fusarium graminearum. PLoS ONE, 2013, 8, e67926.	2.5	18
63	FcStuA from Fusarium culmorum Controls Wheat Foot and Root Rot in a Toxin Dispensable Manner. PLoS ONE, 2013, 8, e57429.	2.5	41
64	<i>>Barley Stripe Mosaic Virus-</i> Mediated Tools for Investigating Gene Function in Cereal Plants and Their Pathogens: Virus-Induced Gene Silencing, Host-Mediated Gene Silencing, and Virus-Mediated Overexpression of Heterologous Protein. Plant Physiology, 2012, 160, 582-590.	4.8	161
65	Shouldn't enantiomeric purity be included in the 'minimum information about a bioactive entity? Response from the MIABE group. Nature Reviews Drug Discovery, 2012, 11, 730-730.	46.4	0
66	The Induction of Mycotoxins by Trichothecene Producing Fusarium Species. Methods in Molecular Biology, 2012, 835, 439-455.	0.9	10
67	Defining the Predicted Protein Secretome of the Fungal Wheat Leaf Pathogen Mycosphaerella graminicola. PLoS ONE, 2012, 7, e49904.	2.5	73
68	The <i>velvet</i> gene, <i>FgVe1</i> , affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in <i>Fusarium graminearum</i> . Molecular Plant Pathology, 2012, 13, 363-374.	4.2	95
69	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13, 414-430.	4.2	3,270
70	Detection of Multi-clustered Genes and Community Structure for the Plant Pathogenic Fungus Fusarium graminearum. Lecture Notes in Computer Science, 2012, , 69-86.	1.3	8
71	The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, , no-no.	4.2	22
72	The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis. PLoS ONE, 2012, 7, e33731.	2.5	161

#	Article	IF	CITATIONS
73	Minimum information about a bioactive entity (MIABE). Nature Reviews Drug Discovery, 2011, 10, 661-669.	46.4	80
74	The complex interactions between host immunity and non-biotrophic fungal pathogens of wheat leaves. Journal of Plant Physiology, 2011, 168, 63-71.	3.5	56
75	Inactivation of plant infecting fungal and viral pathogens to achieve biological containment in drainage water using UV treatment. Journal of Applied Microbiology, 2011, 110, 675-687.	3.1	7
76	Evidence that wheat cultivars differ in their ability to build up inoculum of the takeâ€all fungus, <i>Gaeumannomyces graminis</i> var. <i>tritici</i> , under a first wheat crop. Plant Pathology, 2011, 60, 200-206.	2.4	23
77	An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Molecular Ecology, 2011, 20, no-no.	3.9	48
78	Aberrant protein <i>N</i> â€glycosylation impacts upon infectionâ€related growth transitions of the haploid plantâ€pathogenic fungus <i>Mycosphaerella graminicola</i> . Molecular Microbiology, 2011, 81, 415-433.	2.5	60
79	OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447.	2.6	11
80	Characterisation of the <i>Fusarium graminearum</i> -Wheat Floral Interaction. Journal of Pathogens, 2011, 2011, 1-9.	1.4	40
81	Analysis of Two in Planta Expressed LysM Effector Homologs from the Fungus <i>Mycosphaerella graminicola</i> Reveals Novel Functional Properties and Varying Contributions to Virulence on Wheat Â. Plant Physiology, 2011, 156, 756-769.	4.8	333
82	Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis. PLoS Genetics, 2011, 7, e1002070.	3.5	532
83	A Combined ¹ H Nuclear Magnetic Resonance and Electrospray Ionization–Mass Spectrometry Analysis to Understand the Basal Metabolism of Plant-Pathogenic <i>Fusarium</i> spp Molecular Plant-Microbe Interactions, 2010, 23, 1605-1618.	2.6	26
84	A Partial Chromosomal Deletion Caused by Random Plasmid Integration Resulted in a Reduced Virulence Phenotype in <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1083-1096.	2.6	13
85	A Role for Topoisomerase I in Fusarium graminearum and F. culmorum Pathogenesis and Sporulation. Molecular Plant-Microbe Interactions, 2010, 23, 566-577.	2.6	44
86	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	27.8	1,442
87	The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet cospikelet colonisation in wheat ears. Fungal Biology, 2010, 114, 555-571.	2.5	184
88	Identification and characterisation of Mycosphaerella graminicola secreted or surface-associated proteins with variable intragenic coding repeats. Fungal Genetics and Biology, 2010, 47, 19-32.	2.1	39
89	DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics, 2009, 10, 458.	2.8	55
90	High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theoretical and Applied Genetics, 2009, 119, 851-865.	3.6	63

#	Article	IF	CITATIONS
91	Lack of the plant signalling component SGT1b enhances disease resistance to <i>Fusarium culmorum</i> in Arabidopsis buds and flowers. New Phytologist, 2009, 181, 901-912.	7.3	27
92	Characterization of Two Unusual Features of Resistance to <i>Soilborne cereal mosaic virus</i> in Hexaploid Wheat: Leakiness and Gradual Elimination of Viral Coat Protein from Infected Root Tissues. Molecular Plant-Microbe Interactions, 2009, 22, 560-574.	2.6	6
93	Molecular Characterization and Functional Analysis of <i>MgNLP</i> , the Sole NPP1 Domain–Containing Protein, from the Fungal Wheat Leaf Pathogen <i>Mycosphaerella graminicola</i> . Molecular Plant-Microbe Interactions, 2009, 22, 790-799.	2.6	151
94	<i>Fusarium graminearum </i> gene deletion mutants <i>map1 </i> and <i> tri5</i> reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. New Phytologist, 2008, 177, 990-1000.	7.3	87
95	Phenotypic and genetic analysis of the <i>Triticum monococcum</i> – <i>Mycosphaerella graminicola </i> interaction. New Phytologist, 2008, 179, 1121-1132.	7.3	28
96	NPR1 and EDS11 contribute to host resistance against <i>Fusarium culmorum</i> in Arabidopsis buds and flowers. Molecular Plant Pathology, 2008, 9, 697-704.	4.2	23
97	Plant resistance signalling hijacked by a necrotrophic fungal pathogen. Plant Signaling and Behavior, 2008, 3, 993-995.	2.4	67
98	The Wheat Mitogen-Activated Protein Kinases TaMPK3 and TaMPK6 Are Differentially Regulated at Multiple Levels during Compatible Disease Interactions with <i>Mycosphaerella graminicola</i> Â Â. Plant Physiology, 2008, 147, 802-815.	4.8	112
99	Identification and Characterization of a Novel Efficient Resistance Response to the Furoviruses SBWMV and SBCMV in Barley. Molecular Plant-Microbe Interactions, 2008, 21, 1193-1204.	2.6	10
100	Identification of variation in adaptively important traits and genome-wide analysis of trait–marker associations in Triticum monococcum. Journal of Experimental Botany, 2007, 58, 3749-3764.	4.8	39
101	PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Research, 2007, 36, D572-D576.	14.5	143
102	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	12.6	837
103	Transcriptional Adaptation of Mycosphaerella graminicola to Programmed Cell Death (PCD) of Its Susceptible Wheat Host. Molecular Plant-Microbe Interactions, 2007, 20, 178-193.	2.6	202
104	The Pathogen-Host Interactions Database (PHI-base) Provides Insights into Generic and Novel Themes of Pathogenicity. Molecular Plant-Microbe Interactions, 2006, 19, 1451-1462.	2.6	68
105	Dominantâ€negative interference with defence signalling by truncation mutations of the tomato Cfâ€9 disease resistance gene. Plant Journal, 2006, 46, 385-399.	5.7	6
106	PHI-base: a new database for pathogen host interactions. Nucleic Acids Research, 2006, 34, D459-D464.	14.5	256
107	Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp. FEMS Microbiology Letters, 2005, 253, 67-74.	1.8	62
108	Metabolic and stress adaptation by Mycosphaerella graminicola during sporulation in its host revealed through microarray transcription profiling. Molecular Plant Pathology, 2005, 6, 527-540.	4.2	36

#	Article	IF	CITATIONS
109	Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici). Fungal Genetics and Biology, 2005, 42, 376-389.	2.1	43
110	Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 2003, 14, 177-193.	6.6	521
111	The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology, 2003, 4, 347-359.	4.2	130
112	p-CoumaroyInoradrenaline, a Novel Plant Metabolite Implicated in Tomato Defense against Pathogens. Journal of Biological Chemistry, 2003, 278, 43373-43383.	3.4	88
113	Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant Journal, 2002, 32, 961-973.	5.7	111
114	Comparison of the Hypersensitive Response Induced by the Tomato Cf-4 and Cf-9 Genes in Nicotiana spp Molecular Plant-Microbe Interactions, 2000, 13, 465-469.	2.6	43
115	Salicylic acid is not required forCf-2- andCf-9-dependent resistance of tomato toCladosporium fulvum. Plant Journal, 2000, 23, 305-318.	5.7	139
116	cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell, 2000, 12, 963-977.	6.6	387
117	K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction. Plant Journal, 1999, 19, 453-462.	5.7	79
118	SixArabidopsis thalianahomologues of the human respiratory burst oxidase (gp91phox). Plant Journal, 1998, 14, 365-370.	5.7	403
119	The Tomato Cf-9 Disease Resistance Gene Functions in Tobacco and Potato to Confer Responsiveness to the Fungal Avirulence Gene Product Avr9. Plant Cell, 1998, 10, 1251-1266.	6.6	138
120	The Tomato Cf-9 Disease Resistance Gene Functions in Tobacco and Potato to Confer Responsiveness to the Fungal Avirulence Gene Product Avr9. Plant Cell, 1998, 10, 1251.	6.6	11
121	Rapid, Cf-9- and Avr9-Dependent Production of Active Oxygen Species in Tobacco Suspension Cultures. Molecular Plant-Microbe Interactions, 1998, 11, 1155-1166.	2.6	118
122	PLANT DISEASE RESISTANCE GENES. Annual Review of Plant Biology, 1997, 48, 575-607.	14.3	965
123	Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9 Locus of Tomato. Cell, 1997, 91, 821-832.	28.9	562
124	rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant Journal, 1996, 10, 515-522.	5.7	294
125	Ensnaring microbes: the components of plant disease resistance. New Phytologist, 1996, 133, 11-34.	7.3	14
126	Plant disease resistance genes: unravelling how they work. Canadian Journal of Botany, 1995, 73, 495-505.	1.1	10

#	Article	IF	CITATIONS
127	Incomplete Dominance of Tomato <i>Cf</i> Genes for Resistance to <i>Cladosporium fulvum</i> . Molecular Plant-Microbe Interactions, 1994, 7, 58.	2.6	65
128	Changes in abundance of translatable mRNA species in potato roots and leaves following root invasion by cyst-nematode G. rostochiensis pathotypes. Physiological and Molecular Plant Pathology, 1990, 37, 339-354.	2.5	21
129	Systemic accumulation of novel proteins in the apoplast of the leaves of potato plants following root invasion by the cyst-nematode Globodera rostochiensis. Physiological and Molecular Plant Pathology, 1989, 35, 495-506.	2.5	38