
Scott Jasechko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Terrestrial water fluxes dominated by transpiration. Nature, 2013, 496, 347-350.	27.8	966
2	Transpiration in the global water cycle. Agricultural and Forest Meteorology, 2014, 189-190, 115-117.	4.8	642
3	The global volume and distribution of modernÂgroundwater. Nature Geoscience, 2016, 9, 161-167.	12.9	450
4	Global separation of plant transpiration from groundwater and streamflow. Nature, 2015, 525, 91-94.	27.8	377
5	Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 2017, 44, 2792-2801.	4.0	308
6	Substantial proportion of global streamflow less than three monthsÂold. Nature Geoscience, 2016, 9, 126-129.	12.9	252
7	The pronounced seasonality of global groundwater recharge. Water Resources Research, 2014, 50, 8845-8867.	4.2	246
8	Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, 2017, 10, 425-429.	12.9	210
9	Global Isotope Hydrogeology―Review. Reviews of Geophysics, 2019, 57, 835-965.	23.0	165
10	Global groundwater wells at risk of running dry. Science, 2021, 372, 418-421.	12.6	133
11	Intensive rainfall recharges tropical groundwaters. Environmental Research Letters, 2015, 10, 124015.	5.2	114
12	Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nature Communications, 2020, 11, 3229.	12.8	79
13	Dry groundwater wells in the western United States. Environmental Research Letters, 2017, 12, 104002.	5.2	72
14	Stable isotope mass balance of the Laurentian Great Lakes. Journal of Great Lakes Research, 2014, 40, 336-346.	1.9	65
15	lsotopic evidence for widespread coldâ€seasonâ€biased groundwater recharge and young streamflow across central Canada. Hydrological Processes, 2017, 31, 2196-2209.	2.6	65
16	Deeper well drilling an unsustainable stopgap to groundwater depletion. Nature Sustainability, 2019, 2, 773-782.	23.7	64
17	Partitioning young and old groundwater with geochemical tracers. Chemical Geology, 2016, 427, 35-42.	3.3	59
18	Late-glacial to late-Holocene shifts in global precipitation Î' ¹⁸ O. Climate of the Past, 2015, 11, 1375-1393.	3.4	57

Scott Jasechko

#	Article	IF	CITATIONS
19	Evidence of discharging saline formation water to the Athabasca River in the oil sands mining region, northern Alberta. Canadian Journal of Earth Sciences, 2013, 50, 1244-1257.	1.3	56
20	The Persistence of Brines in Sedimentary Basins. Geophysical Research Letters, 2018, 45, 4851-4858.	4.0	54
21	Widespread potential loss of streamflow into underlying aquifers across the USA. Nature, 2021, 591, 391-395.	27.8	54
22	Hydraulic fracturing near domestic groundwater wells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13138-13143.	7.1	53
23	Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
24	The isotopic composition of the Laurentide Ice Sheet and fossil groundwater. Geophysical Research Letters, 2015, 42, 4856-4861.	4.0	51
25	Quantifying saline groundwater seepage to surface waters in the Athabasca oil sands region. Applied Geochemistry, 2012, 27, 2068-2076.	3.0	45
26	California's Central Valley Groundwater Wells Run Dry During Recent Drought. Earth's Future, 2020, 8, e2019EF001339.	6.3	40
27	Meltwaters dominate groundwater recharge in cold arid desert of Upper Indus River Basin (UIRB), western Himalayas. Science of the Total Environment, 2021, 786, 147514.	8.0	38
28	Competition for shrinking window of low salinity groundwater. Environmental Research Letters, 2018, 13, 114013.	5.2	37
29	Uncertainties in tritium mass balance models for groundwater recharge estimation. Journal of Hydrology, 2019, 571, 150-158.	5.4	37
30	Divergent hydrological responses to 20th century climate change in shallow tundra ponds, western Hudson Bay Lowlands. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	32
31	Watershed services in the humid tropics: Opportunities from recent advances in ecohydrology. Ecohydrology, 2018, 11, e1921.	2.4	32
32	Global sinusoidal seasonality in precipitation isotopes. Hydrology and Earth System Sciences, 2019, 23, 3423-3436.	4.9	29
33	The rapid yet uneven turnover of Earth's groundwater. Geophysical Research Letters, 2017, 44, 5511-5520.	4.0	27
34	Plants turn on the tap. Nature Climate Change, 2018, 8, 562-563.	18.8	18
35	Lateâ€Pleistocene precipitation δ ¹⁸ 0 interpolated across the global landmass. Geochemistry, Geophysics, Geosystems, 2016, 17, 3274-3288.	2.5	17
36	Widespread and increased drilling of wells into fossil aquifers in the USA. Nature Communications, 2022, 13, 2129.	12.8	14

#	Article	IF	CITATIONS
37	Base of fresh water, groundwater salinity, and well distribution across California. Proceedings of the United States of America, 2020, 117, 32302-32307.	7.1	13
38	Indigenous communities, groundwater opportunities. Science, 2018, 361, 453-455.	12.6	10
39	Jasechko et al. reply. Nature, 2014, 506, E2-E3.	27.8	7
40	Formation waters discharge to rivers near oil sands projects. Hydrological Processes, 2018, 32, 533-549.	2.6	4