
Jesús RodrÃ-guez DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7036503/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Epidemiology of Caliciviruses Causing Outbreaks and Sporadic Cases of Acute Gastroenteritis in Spain. Journal of Clinical Microbiology, 2002, 40, 2854-2859.	3.9	165
2	Rotavirus Stimulates Release of Serotonin (5-HT) from Human Enterochromaffin Cells and Activates Brain Structures Involved in Nausea and Vomiting. PLoS Pathogens, 2011, 7, e1002115.	4.7	152
3	Interaction of Intestinal Bacteria with Human Rotavirus during Infection in Children. International Journal of Molecular Sciences, 2021, 22, 1010.	4.1	142
4	The G428A Nonsense Mutation in FUT2 Provides Strong but Not Absolute Protection against Symptomatic GII.4 Norovirus Infection. PLoS ONE, 2009, 4, e5593.	2.5	125
5	Pyrrolineâ€5â€carboxylate synthase and proline biosynthesis: From osmotolerance to rare metabolic disease. Protein Science, 2010, 19, 372-382.	7.6	112
6	Antibody Prevalence and Titer to Norovirus (Genogroup II) Correlate with Secretor(FUT2)but Not with ABO Phenotype or Lewis(FUT3)Genotype. Journal of Infectious Diseases, 2006, 194, 1422-1427.	4.0	108
7	Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology, 2009, 19, 309-320.	2.5	93
8	Utilization of Natural Fucosylated Oligosaccharides by Three Novel α- <scp>l</scp> -Fucosidases from a Probiotic <i>Lactobacillus casei</i> Strain. Applied and Environmental Microbiology, 2011, 77, 703-705.	3.1	84
9	Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. International Journal of Food Microbiology, 2018, 266, 1-7.	4.7	80
10	Detection and Characterization of Waterborne Gastroenteritis Viruses in Urban Sewage and Sewage-Polluted River Waters in Caracas, Venezuela. Applied and Environmental Microbiology, 2009, 75, 387-394.	3.1	74
11	Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans. Scientific Reports, 2017, 7, 45559.	3.3	71
12	SARS-CoV-2 antibodies, serum inflammatory biomarkers and clinical severity of hospitalized COVID-19 patients. Journal of Clinical Virology, 2020, 131, 104611.	3.1	61
13	A unique gene cluster for the utilization of the mucosal and human milkâ€associated glycans galactoâ€ <scp><i>N</i></scp> â€biose and lactoâ€ <scp><i>N</i></scp> â€biose in <scp><i>L</i></scp> <i>actobacillus casei</i> . Molecular Microbiology, 2014, 93, 521-538.	2.5	56
14	Functional Analysis of the Lactobacillus casei BL23 Sortases. Applied and Environmental Microbiology, 2012, 78, 8684-8693.	3.1	55
15	Molecular Detection and Characterization of Aichi Viruses in Sewage-Polluted Waters of Venezuela. Applied and Environmental Microbiology, 2010, 76, 4113-4115.	3.1	49
16	The Interactions between Host Glycobiology, Bacterial Microbiota, and Viruses in the Gut. Viruses, 2018, 10, 96.	3.3	47
17	Improving efficiency of viability-qPCR for selective detection of infectious HAV in food and water samples. Journal of Applied Microbiology, 2018, 124, 958-964.	3.1	44
18	Lactobacillus casei Ferments theN-Acetylglucosamine Moiety of Fucosyl-α-1,3-N-Acetylglucosamine and Excretes l-Fucose. Applied and Environmental Microbiology, 2012, 78, 4613-4619.	3.1	42

#	Article	IF	CITATIONS
19	Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure. Journal of Clinical Virology, 2021, 134, 104691.	3.1	42
20	Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. PLoS Pathogens, 2019, 15, e1007865.	4.7	41
21	Epidemiological Surveillance of Norovirus and Rotavirus in Sewage (2016–2017) in Valencia (Spain). Microorganisms, 2020, 8, 458.	3.6	39
22	Synthesis of Fucosyl- <i>N</i> -Acetylglucosamine Disaccharides by Transfucosylation Using α-l-Fucosidases from Lactobacillus casei. Applied and Environmental Microbiology, 2013, 79, 3847-3850.	3.1	38
23	Noroviral P-Particles as an In Vitro Model to Assess the Interactions of Noroviruses with Probiotics. PLoS ONE, 2014, 9, e89586.	2.5	38
24	Histo-Blood Group Antigens in Children with Symptomatic Rotavirus Infection. Viruses, 2019, 11, 339.	3.3	38
25	Inference of SARS-CoV-2 spike-binding neutralizing antibody titers in sera from hospitalized COVID-19 patients by using commercial enzyme and chemiluminescent immunoassays. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 485-494.	2.9	37
26	Role of nitric oxide during rotavirus infection. Journal of Medical Virology, 2006, 78, 979-985.	5.0	36
27	Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortexinÂvivoin rats with chronic liver failure. Journal of Neurochemistry, 2007, 102, 51-64.	3.9	35
28	The Extracellular Wall-Bound β- <i>N</i> -Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto- <i>N</i> -Triose. Applied and Environmental Microbiology, 2016, 82, 570-577.	3.1	30
29	Lower respiratory tract and plasma SARS-CoV-2 RNA load in critically ill adult COVID-19 patients: Relationship with biomarkers of disease severity. Journal of Infection, 2021, 83, 381-412.	3.3	27
30	Quasispecies dynamics and molecular evolution of human norovirus capsid P region during chronic infection. Journal of General Virology, 2009, 90, 432-441.	2.9	26
31	Human norovirus hyper-mutation revealed by ultra-deep sequencing. Infection, Genetics and Evolution, 2016, 41, 233-239.	2.3	26
32	Epidemiology of foodborne Norovirus outbreaks in Catalonia, Spain. BMC Infectious Diseases, 2008, 8, 47.	2.9	23
33	The Rotavirus Vaccine Landscape, an Update. Pathogens, 2021, 10, 520.	2.8	22
34	Yeast expression of the VP8* fragment of the rotavirus spike protein and its use as immunogen in mice. Biotechnology and Bioengineering, 2006, 93, 89-98.	3.3	21
35	Aetiology and epidemiology of viral gastroenteritis outbreaks in Catalonia (Spain) in 2004–2005. Journal of Clinical Virology, 2008, 43, 126-131.	3.1	21
36	Characterization of a Novel Conformational GII.4 Norovirus Epitope: Implications for Norovirus-Host Interactions. Journal of Virology, 2016, 90, 7703-7714.	3.4	21

#	Article	IF	CITATIONS
37	Hit identification of novel heparanase inhibitors by structure- and ligand-based approaches. Bioorganic and Medicinal Chemistry, 2013, 21, 1944-1951.	3.0	20
38	Preparative scale purification of fucosyl-N-acetylglucosamine disaccharides and their evaluation as potential prebiotics and antiadhesins. Applied Microbiology and Biotechnology, 2015, 99, 7165-7176.	3.6	20
39	Antiviral activity of aged green tea extract in model food systems and under gastric conditions. International Journal of Food Microbiology, 2019, 292, 101-106.	4.7	20
40	Metabolic engineering of <i>Lactobacillus casei</i> for production of UDPâ€Nâ€acetylglucosamine. Biotechnology and Bioengineering, 2012, 109, 1704-1712.	3.3	19
41	The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Scientific Reports, 2018, 8, 7152.	3.3	19
42	Nasal immunization of mice with a rotavirus DNA vaccine that induces protective intestinal IgA antibodies. Vaccine, 2004, 23, 489-498.	3.8	18
43	Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei. Journal of Biotechnology, 2011, 154, 212-215.	3.8	18
44	Norovirus infections and seroprevalence of genotype gii.4â€specific antibodies in a spanish population. Journal of Medical Virology, 2015, 87, 675-682.	5.0	18
45	Therapeutic Opportunities in Intestinal Microbiota–Virus Interactions. Trends in Biotechnology, 2018, 36, 645-648.	9.3	18
46	Epidemiological and Genetic Characterization of Sapovirus in Patients with Acute Gastroenteritis in Valencia (Spain). Viruses, 2021, 13, 184.	3.3	17
47	Molecular Characterization of Sewage-Borne Pathogens and Detection of Sewage Markers in an Urban Stream in Caracas, Venezuela. Applied and Environmental Microbiology, 2010, 76, 2023-2026.	3.1	16
48	SARSâ€CoVâ€2 Nâ€antigenemia in critically ill adult COVIDâ€19 patients: Frequency and association with inflammatory and tissueâ€damage biomarkers. Journal of Medical Virology, 2022, 94, 222-228.	5.0	16
49	Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei. Bioengineered, 2012, 3, 339-342.	3.2	15
50	Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species. Applied Microbiology and Biotechnology, 2017, 101, 205-215.	3.6	15
51	Unique Microbial Catabolic Pathway for the Human Core <i>N</i> -Glycan Constituent Fucosyl-α-1,6- <i>N</i> -Acetylglucosamine-Asparagine. MBio, 2020, 11, .	4.1	15
52	Infant gut microbiota modulation by human milk disaccharides in humanized microbiome mice. Gut Microbes, 2021, 13, 1-20.	9.8	15
53	Expression and purification of polyhistidine-tagged rotavirus NSP4 proteins in insect cells. Protein Expression and Purification, 2003, 31, 207-212.	1.3	14
54	Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota. Scientific Reports, 2020, 10, 11845.	3.3	14

#	Article	IF	CITATIONS
55	Single-chain variable fragment (scFv) antibodies against rotavirus NSP4 enterotoxin generated by phage display. Journal of Virological Methods, 2004, 121, 231-238.	2.1	13
56	Design of a multiplex nested PCR for genotyping of the NSP4 from group A rotavirus. Journal of Virological Methods, 2008, 149, 240-245.	2.1	13
57	The Role of Host Glycobiology and Gut Microbiota in Rotavirus and Norovirus Infection, an Update. International Journal of Molecular Sciences, 2021, 22, 13473.	4.1	13
58	Acute gastroenteritis outbreaks in Catalonia, Spain: Norovirus versusSalmonella. Scandinavian Journal of Gastroenterology, 2008, 43, 567-573.	1.5	12
59	Suitability of two rapid lateral flow immunochromatographic assays for predicting SARS oVâ€⊋ neutralizing activity of sera. Journal of Medical Virology, 2021, 93, 2301-2306.	5.0	12
60	Structures of collagen IV globular domains: insight into associated pathologies, folding and network assembly. IUCrJ, 2018, 5, 765-779.	2.2	12
61	Selection of Single-Chain Antibodies against the VP8* Subunit of Rotavirus VP4 Outer Capsid Protein and Their Expression in Lactobacillus casei. Applied and Environmental Microbiology, 2004, 70, 6936-6939.	3.1	11
62	Precise mapping of the Goodpasture epitope(s) using phage display, site-directed mutagenesis, and surface plasmon resonance. Kidney International, 2013, 83, 438-445.	5.2	11
63	High incidence of outbreaks of norovirus GGII.4 in hospitals and nursing homes in Catalonia. Journal of Hospital Infection, 2009, 72, 275-277.	2.9	10
64	Seroepidemiology of porcine enteric sapovirus in pig farms in Venezuela. Veterinary Immunology and Immunopathology, 2010, 137, 269-274.	1.2	9
65	Antibodies against Lewis antigens inhibit the binding of human norovirus GII.4 virus-like particles to saliva but not to intestinal Caco-2 cells. Virology Journal, 2016, 13, 82.	3.4	9
66	Characterisation of a household norovirus outbreak occurred in Valencia (Spain). BMC Infectious Diseases, 2016, 16, 124.	2.9	9
67	Adaptive immune responses to SARS-CoV-2 in recovered severe COVID-19 patients. Journal of Clinical Virology, 2021, 142, 104943.	3.1	9
68	Humoral immune response to rotavirus NSP4 enterotoxin in Spanish children. Journal of Medical Virology, 2005, 77, 317-322.	5.0	8
69	Oral immunization of mice with Lactococcus lactis expressing the rotavirus VP8* protein. Biotechnology Letters, 2011, 33, 1169-1175.	2.2	8
70	Infant-gut associated Bifidobacterium dentium strains utilize the galactose moiety and release lacto-N-triose from the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose. Scientific Reports, 2021, 11, 23328.	3.3	8
71	Probiotics against Digestive Tract Viral Infections. , 2013, , 271-284.		7
72	Rotavirus symptomatic infection among unvaccinated and vaccinated children in Valencia, Spain. BMC Infectious Diseases, 2019, 19, 998.	2.9	7

#	Article	IF	CITATIONS
73	Molecular Virology of Enteric Viruses (with Emphasis on Caliciviruses). , 2006, , 43-100.		7
74	Presence of Human Enteric Viruses in the Stools of Healthy Malawian 6â€Monthâ€Old Infants. Journal of Pediatric Gastroenterology and Nutrition, 2014, 58, 502-504.	1.8	6
75	Combined kinetic analysis of SARS-CoV-2 RNAemia, N-antigenemia and virus-specific antibodies in critically ill adult COVID-19 patients. Scientific Reports, 2022, 12, 8273.	3.3	5
76	The Molecular Virology of Enteric Viruses. , 2016, , 59-130.		4
77	Nearly Complete Genome Sequence of a Human Norovirus GII.P17-GII.17 Strain Isolated from Brazil in 2015. Microbiology Resource Announcements, 2019, 8, .	0.6	4
78	Microbiota Depletion Promotes Human Rotavirus Replication in an Adult Mouse Model. Biomedicines, 2021, 9, 846.	3.2	4
79	Benchmarking different approaches for Norovirus genome assembly in metagenome samples. BMC Genomics, 2021, 22, 849.	2.8	4
80	Recombinant Noroviruses Circulating in Spain from 2016 to 2020 and Proposal of Two Novel Genotypes within Genogroup I. Microbiology Spectrum, 2022, 10, .	3.0	4
81	Gross blood in stools of premature neonates, a clinical and microbiological followâ€up study. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, 486-491.	1.5	3
82	Sero-epidemiological study of the rotavirus VP8* protein from different P genotypes in Valencia, Spain. Scientific Reports, 2020, 10, 7753.	3.3	3
83	Nearly Complete Genome Sequences of Human Norovirus Belonging to Several Genotypes from Valencia, Spain. Microbiology Resource Announcements, 2019, 8, .	0.6	3
84	Intestinal Microbiota and Susceptibility to Viral Infections. , 2016, , 813-826.		2
85	Genetically Engineered Lactobacilli for Technological and Functional Food Applications. , 2012, , .		1
86	Bioactive Properties and Biotechnological Production of Human Milk Oligosaccharides. , 2018, , 425-460.		1
87	Proteolytic action of caspases 3 and 7 on the hydrolysis of bovine and porcine muscle myofibrillar proteins. , 2013, , 278-281.		1
88	Norovirus infection: why are the genogroup II genotype 4 strains so persistent in the population?. Future Virology, 2016, 11, 711-714.	1.8	0