Paul Zeun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703621/publications.pdf

Version: 2024-02-01

168 papers 10,888 citations

43 h-index 96 g-index

173 all docs

173 docs citations

173 times ranked

9667 citing authors

#	Article	IF	Citations
1	Opportunity cost determines free-operant action initiation latency and predicts apathy. Psychological Medicine, 2023, 53, 1850-1859.	4.5	1
2	Altered nuclear architecture in blood cells from Huntington's disease patients. Neurological Sciences, 2022, 43, 379-385.	1.9	2
3	Polyglutamine diseases. Current Opinion in Neurobiology, 2022, 72, 39-47.	4.2	40
4	Imbalanced basal ganglia connectivity is associated with motor deficits and apathy in Huntington's disease. Brain, 2022, 145, 991-1000.	7.6	11
5	An <scp>MDS</scp> Evidenceâ€Based Review on Treatments for Huntington's Disease. Movement Disorders, 2022, 37, 25-35.	3.9	19
6	Timing of selective basal ganglia white matter loss in premanifest Huntington's disease. NeuroImage: Clinical, 2022, 33, 102927.	2.7	10
7	Suppression of Somatic Expansion As a Novel Therapeutic Approach for Huntington Disease and Other Repeat Expansion Disorders., 2022, 1, 163-175.		O
8	Huntington's Disease Clinical Trials Corner: April 2022. Journal of Huntington's Disease, 2022, 11, 105-118.	1.9	16
9	<scp>CAG</scp> Somatic Instability in a Huntington Disease Expansion Carrier Presenting with a Progressive Supranuclear Palsyâ€like Phenotype. Movement Disorders, 2022, 37, 1555-1557.	3.9	3
10	"On Chorea― 150 Years of the Beginning of Hope. Movement Disorders, 2022, 37, 2194-2196.	3.9	2
11	A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurology, The, 2022, 21, 632-644.	10.2	78
12	Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain, 2022, 145, 3953-3967.	7.6	3
13	Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 143-149.	1.9	26
14	Genetic testing in dementia â€" utility and clinical strategies. Nature Reviews Neurology, 2021, 17, 23-36.	10.1	26
15	Diffusion imaging in Huntington's disease: comprehensive review. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 62-69.	1.9	22
16	Reply to â€Topographical layer imaging as a tool to track neurodegenerative disease spread in M1'. Nature Reviews Neuroscience, 2021, 22, 69-69.	10.2	3
17	Dynamics of Cortical Degeneration Over a Decade in Huntington's Disease. Biological Psychiatry, 2021, 89, 807-816.	1.3	32
18	Altered iron and myelin in premanifest Huntington's Disease more than 20 years before clinical onset: Evidence from the cross-sectional HD Young Adult Study. EBioMedicine, 2021, 65, 103266.	6.1	20

#	Article	IF	CITATIONS
19	Expanding the Spectrum of Movement Disorders Associated With <i>C9orf72</i> Hexanucleotide Expansions. Neurology: Genetics, 2021, 7, e575.	1.9	20
20	Validating Automated Segmentation Tools in the Assessment of Caudate Atrophy in Huntington's Disease. Frontiers in Neurology, 2021, 12, 616272.	2.4	3
21	Human Huntington's disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species. Journal of Neuroinflammation, 2021, 18, 94.	7.2	26
22	Tracking Huntington $\hat{E}^{1}\!\!/\!\!4$ s Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers. Movement Disorders, 2021, 36, 2282-2292.	3.9	10
23	Relating quantitative <scp>7T MRI</scp> across cortical depths to cytoarchitectonics, gene expression and connectomics. Human Brain Mapping, 2021, 42, 4996-5009.	3.6	17
24	A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. Frontiers in Big Data, 2021, 4, 662200.	2.9	2
25	FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease. Cell Reports, 2021, 36, 109649.	6.4	32
26	Aberrant Striatal Value Representation in Huntington's Disease Gene Carriers 25 Years Before Onset. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 910-918.	1.5	1
27	Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons. Frontiers in Cellular Neuroscience, 2021, 15, 742763.	3.7	15
28	F05â€Biological and clinical characteristics of gene carriers far from predicted onset in the hd-yas study: a cross-sectional analysis. , 2021, , .		0
29	Composite <scp>UHDRS</scp> Correlates With Progression of Imaging Biomarkers in Huntington's Disease. Movement Disorders, 2021, 36, 1259-1264.	3.9	12
30	Disease Onset in Huntington's Disease: When Is the Conversion?. Movement Disorders Clinical Practice, 2021, 8, 352-360.	1.5	19
31	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurology: Genetics, 2021, 7, e617.	1.9	20
32	Characterizing White Matter in Huntington's Disease. Movement Disorders Clinical Practice, 2020, 7, 52-60.	1.5	20
33	Therapeutic Antisense Targeting of Huntingtin. DNA and Cell Biology, 2020, 39, 154-158.	1.9	16
34	Wild-type huntingtin regulates human macrophage function. Scientific Reports, 2020, 10, 17269.	3.3	7
35	Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington's disease. Brain Communications, 2020, 2, fcaa049.	3.3	10
36	A new family with GLRB-related hyperekplexia showing chorea in homo- and heterozygous variant carriers. Parkinsonism and Related Disorders, 2020, 79, 97-99.	2.2	4

#	Article	IF	CITATIONS
37	9â€Aberrant striatal value representation in Huntington's disease gene carriers 25 years before onset. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, e4.1-e4.	1.9	0
38	Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease. Science Translational Medicine, 2020, 12, .	12.4	64
39	Longitudinal Structural <scp>MRI</scp> in Neurologically Healthy Adults. Journal of Magnetic Resonance Imaging, 2020, 52, 1385-1399.	3.4	5
40	Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurology, The, 2020, 19, 502-512.	10.2	122
41	The human motor cortex microcircuit: insights for neurodegenerative disease. Nature Reviews Neuroscience, 2020, 21, 401-415.	10.2	56
42	Antisense oligonucleotides for neurodegeneration. Science, 2020, 367, 1428-1429.	12.6	62
43	Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model. Brain Communications, 2020, 2, fcaa066.	3.3	34
44	Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease. Annals of Neurology, 2020, 87, 751-762.	5. 3	22
45	A small molecule kicks repeat expansion into reverse. Nature Genetics, 2020, 52, 136-137.	21.4	3
46	The Dementias Platform UK (DPUK) Data Portal. European Journal of Epidemiology, 2020, 35, 601-611.	5.7	45
47	Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction. FASEB Journal, 2020, 34, 8139-8154.	0.5	18
48	Longitudinal expression changes are weak correlates of disease progression in Huntington's disease. Brain Communications, 2020, 2, fcaa172.	3.3	6
49	Association of CAG Repeats With Long-term Progression in Huntington Disease. JAMA Neurology, 2019, 76, 1375.	9.0	44
50	A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. EBioMedicine, 2019, 48, 568-580.	6.1	104
51	One decade ago, one decade ahead in huntington's disease. Movement Disorders, 2019, 34, 1434-1439.	3.9	7
52	Multimodal characterization of the visual network in Huntington's disease gene carriers. Clinical Neurophysiology, 2019, 130, 2053-2059.	1.5	0
53	Automated Segmentation of Cortical Grey Matter from T1-Weighted MRI Images. Journal of Visualized Experiments, 2019, , .	0.3	0
54	Movement Disorder Society Task Force Viewpoint: Huntington's Disease Diagnostic Categories. Movement Disorders Clinical Practice, 2019, 6, 541-546.	1.5	67

#	Article	IF	CITATIONS
55	Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington's disease by etanercept treatment. Scientific Reports, 2019, 9, 7202.	3.3	16
56	Targeting Huntingtin Expression in Patients with Huntington's Disease. New England Journal of Medicine, 2019, 380, 2307-2316.	27.0	493
57	Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease. Neuron, 2019, 101, 801-819.	8.1	202
58	Defining pediatric huntington disease: Time to abandon the term <i>Juvenile Huntington Disease</i> ?. Movement Disorders, 2019, 34, 584-585.	3.9	16
59	Combined cerebral atrophy score in Huntington's disease based on atlas-based MRI volumetry: Sample size calculations for clinical trials. Parkinsonism and Related Disorders, 2019, 63, 179-184.	2.2	12
60	Apathy Associated With Impaired Recognition of Happy Facial Expressions in Huntington's Disease. Journal of the International Neuropsychological Society, 2019, 25, 453-461.	1.8	6
61	FAN1 modifies Huntington's disease progression by stabilizing the expanded <i>HTT</i> CAG repeat. Human Molecular Genetics, 2019, 28, 650-661.	2.9	99
62	Natural biological variation of white matter microstructure is accentuated in Huntington's disease. Human Brain Mapping, 2018, 39, 3516-3527.	3.6	19
63	Predicting clinical diagnosis in Huntington's disease: An imaging polymarker. Annals of Neurology, 2018, 83, 532-543.	5 . 3	26
64	Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology, 2018, 90, e717-e723.	1.1	65
65	Clinical Features of Huntington's Disease. Advances in Experimental Medicine and Biology, 2018, 1049, 1-28.	1.6	109
66	Stimulating neural plasticity with realâ€time f <scp>MRI</scp> neurofeedback in <scp>H</scp> untington's disease: A proof of concept study. Human Brain Mapping, 2018, 39, 1339-1353.	3.6	33
67	Cross-sectional and longitudinal voxel-based grey matter asymmetries in Huntington's disease. Neurolmage: Clinical, 2018, 17, 312-324.	2.7	23
68	Apathy and atrophy of subcortical brain structures in Huntington's disease: A two-year follow-up study. NeuroImage: Clinical, 2018, 19, 66-70.	2.7	14
69	Brain Regions Showing White Matter Loss inÂHuntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biological Psychiatry, 2018, 83, 456-465.	1.3	79
70	D10â€Neurofilament light protein in blood predicts regional atrophy in huntington's disease. , 2018, , .		0
71	E11â€Compensation in huntington's disease. , 2018, , .		0
72	C01â€Glutamine codon usage and somatic mosaicism of the HTT cag repeat are modifiers of huntington disease severity., 2018,,.		0

#	Article	IF	CITATIONS
73	F45â€Apathy associated with impaired recognition of happy facial expressions in huntington's disease. , 2018, , .		0
74	Working Memory-Related Effective Connectivity in Huntington's Disease Patients. Frontiers in Neurology, 2018, 9, 370.	2.4	12
75	Altered Intracortical T1-Weighted/T2-Weighted Ratio Signal in Huntington's Disease. Frontiers in Neuroscience, 2018, 12, 805.	2.8	17
76	Current Methods for the Treatment and Prevention of Drug-Induced Parkinsonism and Tardive Dyskinesia in the Elderly. Drugs and Aging, 2018, 35, 959-971.	2.7	22
77	Learning Subject-Specific Directed Acyclic Graphs With Mixed Effects Structural Equation Models From Observational Data. Frontiers in Genetics, 2018, 9, 430.	2.3	2
78	Testing a longitudinal compensation model in premanifest Huntington's disease. Brain, 2018, 141, 2156-2166.	7.6	33
79	Response to the letter to the editor by Reilmann et al referring to our article titled "Motor cortex synchronization influences the rhythm of motor performance in premanifest Huntington's diseaseâ€. Movement Disorders, 2018, 33, 1371-1371.	3.9	0
80	In vivo characterization of white matter pathology in premanifest huntington's disease. Annals of Neurology, 2018, 84, 497-504.	5.3	53
81	In vivo neutralization of the protagonist role of macrophages during the chronic inflammatory stage of Huntington's disease. Scientific Reports, 2018, 8, 11447.	3.3	36
82	Overlap between age-at-onset and disease-progression determinants in Huntington disease. Neurology, 2018, 90, e2099-e2106.	1.1	32
83	Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 255-278.	1.8	79
84	Executive impairment is associated with unawareness of neuropsychiatric symptoms in premanifest and early Huntington's disease Neuropsychology, 2018, 32, 958-965.	1.3	13
85	J01â€Effects of IONIS-HTTRX (RG6042) in patients with early huntington's disease, results of the first htt-lowering drug trial. , 2018, , .		2
86	E01â€Modelling the trajectory of cortical atrophy in huntington's disease. , 2018, , .		0
87	F59â€Huntington's disease young adult study (HD-YAS). , 2018, , .		0
88	D08â€Neurofilament light protein in blood as a potential biomarker of neurodegeneration in hungtington's disease: a retrospective cohort analysis. , 2018, , .		0
89	Allele-Selective Suppression of Mutant Huntingtin in Primary Human Blood Cells. Scientific Reports, 2017, 7, 46740.	3.3	21
90	The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington's disease patients. Scientific Reports, 2017, 7, 1307.	3.3	150

#	Article	IF	CITATIONS
91	Validation of a prognostic index for Huntington's disease. Movement Disorders, 2017, 32, 256-263.	3.9	42
92	Age of onset in Huntington's disease is influenced by CAG repeat variations in other polyglutamine disease-associated genes. Brain, 2017, 140, e42-e42.	7.6	11
93	KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4676-E4685.	7.1	119
94	Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis. Lancet Neurology, The, 2017, 16, 601-609.	10.2	272
95	Operationalizing compensation over time in neurodegenerative disease. Brain, 2017, 140, 1158-1165.	7.6	62
96	Structural and functional brain network correlates of depressive symptoms in premanifest Huntington's disease. Human Brain Mapping, 2017, 38, 2819-2829.	3.6	28
97	DNA repair in the trinucleotide repeat disorders. Lancet Neurology, The, 2017, 16, 88-96.	10.2	7 5
98	Myostatin inhibition prevents skeletal muscle pathophysiology in Huntington's disease mice. Scientific Reports, 2017, 7, 14275.	3.3	27
99	Survival End Points for Huntington Disease Trials Prior to a Motor Diagnosis. JAMA Neurology, 2017, 74, 1352.	9.0	12
100	Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurology, The, 2017, 16, 837-847.	10.2	233
101	Design optimization for clinical trials in earlyâ€stage manifest Huntington's disease. Movement Disorders, 2017, 32, 1610-1619.	3.9	11
102	Motor, cognitive, and functional declines contribute to a single progressive factor in early HD. Neurology, 2017, 89, 2495-2502.	1.1	97
103	Structural imaging in premanifest and manifest Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 247-261.	1.8	18
104	Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington's Disease. Frontiers in Neurology, 2017, 8, 519.	2.4	31
105	Gene suppression approaches to neurodegeneration. Alzheimer's Research and Therapy, 2017, 9, 82.	6.2	46
106	Test–Retest Reliability of Measures Commonly Used to Measure Striatal Dysfunction across Multiple Testing Sessions: A Longitudinal Study. Frontiers in Psychology, 2017, 8, 2363.	2.1	16
107	Quantification of huntingtin protein species in Huntington's disease patient leukocytes using optimised electrochemiluminescence immunoassays. PLoS ONE, 2017, 12, e0189891.	2.5	14
108	D16â€White matter microstructure and natural biological variation in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A39.2-A39.	1.9	0

#	Article	IF	CITATIONS
109	K4â€The cost and value of a huntington's disease multidisciplinary team meeting. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A80.2-A80.	1.9	0
110	D21â€Longitudinal compensation in the cognitive network in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.1-A42.	1.9	0
111	<scp>N</scp> omenclature of genetic movement disorders: <scp>R</scp> ecommendations of the international <scp>P</scp> arkinson and movement disorder society task force. Movement Disorders, 2016, 31, 436-457.	3.9	228
112	B48â€DNA repair pathways as a common genetic mechanism modulating the age at onset in polyglutamine diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A26.1-A26.	1.9	0
113	Incidence of adult Huntington's disease in the UK: a UK-based primary care study and a systematic review. BMJ Open, 2016, 6, e009070.	1.9	49
114	Loss of extra-striatal phosphodiesterase 10A expression in early premanifest Huntington's disease gene carriers. Journal of the Neurological Sciences, 2016, 368, 243-248.	0.6	37
115	Natural variation in sensoryâ€motor white matter organization influences manifestations of Huntington's disease. Human Brain Mapping, 2016, 37, 4615-4628.	3.6	18
116	DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Annals of Neurology, 2016, 79, 983-990.	5.3	183
117	Laquinimod dampens hyperactive cytokine production in Huntington's disease patient myeloid cells. Journal of Neurochemistry, 2016, 137, 782-794.	3.9	30
118	Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance. Human Brain Mapping, 2016, 37, 67-80.	3.6	15
119	Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease. Journal of Neurochemistry, 2016, 139, 22-25.	3.9	58
120	Reply letter to Jinnah "Locus pocus―and Albanese "Complex dystonia is not a category in the new 2013 consensus classification― Necessary evolution, no magic!. Movement Disorders, 2016, 31, 1760-1762.	3.9	1
121	George Huntington: a legacy of inquiry, empathy and hope. Brain, 2016, 139, 2326-2333.	7.6	31
122	D20â€Operationalising compensation over time in neurodegenerative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A41.2-A41.	1.9	0
123	D4 Prediction of huntington's disease phenotype by cerebrospinal fluid biomarkers of inflammation and cell death. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A35.1-A35.	1.9	O
124	D8â€Tms-eeg markers of inhibitory deficits in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A36.2-A36.	1.9	0
125	D22â€Compensation in preclinical huntington's disease: evidence from the track-on HD study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.2-A42.	1.9	O
126	Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease. Journal of the International Neuropsychological Society, 2016, 22, 595-608.	1.8	44

#	Article	IF	Citations
127	RNA-Seq of Huntington's disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Human Molecular Genetics, 2016, 25, ddw142.	2.9	47
128	Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin–proteasome system. Acta Neuropathologica, 2016, 131, 411-425.	7.7	51
129	Disruption of immune cell function by mutant huntingtin in Huntington's disease pathogenesis. Current Opinion in Pharmacology, 2016, 26, 33-38.	3.5	39
130	Medication Use in Early-HD Participants in Track-HD: an Investigation of its Effects on Clinical Performance. PLOS Currents, 2016, 8, .	1.4	6
131	A Computational Cognitive Biomarker for Early-Stage Huntington's Disease. PLoS ONE, 2016, 11, e0148409.	2.5	40
132	Cerebrospinal Fluid Inflammatory Biomarkers Reflect Clinical Severity in Huntington's Disease. PLoS ONE, 2016, 11, e0163479.	2.5	58
133	Analysis of White Adipose Tissue Gene Expression Reveals CREB1 Pathway Altered in Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 371-382.	1.9	11
134	Longitudinal Diffusion Tensor Imaging Shows Progressive Changes in White Matter in Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 333-346.	1.9	31
135	Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study. EBioMedicine, 2015, 2, 1420-1429.	6.1	122
136	Neuropsychiatry and White Matter Microstructure in Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 239-249.	1.9	33
137	Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling. Frontiers in Human Neuroscience, 2015, 9, 634.	2.0	8
138	Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models. Neurobiology of Disease, 2015, 73, 388-398.	4.4	50
139	Altered PDE10A expression detectable early before symptomatic onset in Huntington's disease. Brain, 2015, 138, 3016-3029.	7.6	90
140	Prion degradation pathways: Potential for therapeutic intervention. Molecular and Cellular Neurosciences, 2015, 66, 12-20.	2.2	33
141	A SNP in the HTT promoter alters NF- $\hat{\mathbb{P}}$ B binding and is a bidirectional genetic modifier of Huntington disease. Nature Neuroscience, 2015, 18, 807-816.	14.8	113
142	Huntington disease. Nature Reviews Disease Primers, 2015, 1, 15005.	30.5	1,031
143	Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers. Neurobiology of Disease, 2015, 83, 115-121.	4.4	133
144	Short-interval observational data to inform clinical trial design in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1291-1298.	1.9	22

#	Article	IF	Citations
145	The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease. Neuropsychologia, 2015, 79, 138-146.	1.6	56
146	Mutant Huntingtin Does Not Affect the Intrinsic Phenotype of Human Huntington's Disease T Lymphocytes. PLoS ONE, 2015, 10, e0141793.	2.5	11
147	Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 2014, 10, 204-216.	10.1	873
148	Task-Specific Training in Huntington Disease: A Randomized Controlled Feasibility Trial. Physical Therapy, 2014, 94, 1555-1568.	2.4	37
149	White matter integrity in premanifest and early Huntington's disease is related to caudate loss and disease progression. Cortex, 2014, 52, 98-112.	2.4	57
150	Inconsistent emotion recognition deficits across stimulus modalities in Huntington׳s disease. Neuropsychologia, 2014, 64, 99-104.	1.6	20
151	Biomarker development for Huntington's disease. Drug Discovery Today, 2014, 19, 972-979.	6.4	18
152	Correction of inter-scanner and within-subject variance in structural MRI based automated diagnosing. NeuroImage, 2014, 98, 405-415.	4.2	40
153	Skeletal Muscle Atrophy in R6/2 Mice – Altered Circulating Skeletal Muscle Markers and Gene Expression Profile Changes. Journal of Huntington's Disease, 2014, 3, 13-24.	1.9	16
154	The Potential of Composite Cognitive Scores for Tracking Progression in Huntington's Disease. Journal of Huntington's Disease, 2014, 3, 197-207.	1.9	8
155	Interregional compensatory mechanisms of motor functioning in progressing preclinical neurodegeneration. NeuroImage, 2013, 75, 146-154.	4.2	30
156	Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurology, The, 2013, 12, 637-649.	10.2	704
157	Corpus Callosal Atrophy in Premanifest and Early Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 517-526.	1.9	29
158	Quality of Life in Huntington's Disease: A Comparative Study Investigating the Impact for those with Pre-Manifest and Early Manifest Disease, and their Partners. Journal of Huntington's Disease, 2013, 2, 159-175.	1.9	43
159	Reference Genes Selection for Transcriptional Profiling in Blood of HD Patients and R6/2 Mice. Journal of Huntington's Disease, 2013, 2, 185-200.	1.9	8
160	A Critical Evaluation of Inflammatory Markers in Huntington's Disease Plasma. Journal of Huntington's Disease, 2013, 2, 125-134.	1.9	25
161	Visual Working Memory Impairment in Premanifest Gene-Carriers and Early Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 97-106.	1.9	15
162	Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurology, The, 2012, 11, 42-53.	10.2	479

#	Article	IF	Citations
163	Emotion recognition in Huntington's disease: A systematic review. Neuroscience and Biobehavioral Reviews, 2012, 36, 237-253.	6.1	101
164	Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurology, The, 2011, 10, 31-42.	10.2	530
165	Observing Huntington's Disease: the European Huntington's Disease Network's REGISTRY. PLOS Currents, 2010, 2, RRN1184.	1.4	124
166	Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurology, The, 2009, 8, 791-801.	10.2	856
167	The application of NMR-based metabonomics in neurological disorders. Neurotherapeutics, 2006, 3, 358-372.	4.4	0
168	Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Human Molecular Genetics, 2000, 9, 2683-2689.	2.9	182