Yanhui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703616/publications.pdf

Version: 2024-02-01

		57758	45317
128	8,411	44	90
papers	citations	h-index	g-index
132	132	132	11712
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4, 310-316.	13.6	1,857
2	A Family of Metalâ€Organic Frameworks Exhibiting Sizeâ€Selective Catalysis with Encapsulated Nobleâ€Metal Nanoparticles. Advanced Materials, 2014, 26, 4056-4060.	21.0	396
3	Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles. ACS Catalysis, 2014, 4, 2175-2185.	11.2	353
4	Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy and Environmental Science, 2016, 9, 1687-1695.	30.8	290
5	Amorphous/Crystalline Heteroâ€Phase Pd Nanosheets: Oneâ€Pot Synthesis and Highly Selective Hydrogenation Reaction. Advanced Materials, 2018, 30, e1803234.	21.0	231
6	Mesoporous Metal–Organic Frameworks with Sizeâ€, Shapeâ€, and Spaceâ€Distributionâ€Controlled Pore Structure. Advanced Materials, 2015, 27, 2923-2929.	21.0	217
7	Effective Nitrogen Removal and Recovery from Dewatered Sewage Sludge Using a Novel Integrated System of Accelerated Hydrothermal Deamination and Air Stripping. Environmental Science & Eamp; Technology, 2015, 49, 6872-6880.	10.0	191
8	Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews, 2021, 50, 5590-5630.	38.1	181
9	Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10, 1589-1596.	7.4	170
10	An Airâ€Stable Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600453.	19.5	167
11	A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation. Applied Catalysis B: Environmental, 2016, 196, 108-116.	20.2	155
12	Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications. Advanced Materials, 2016, 28, 10282-10286.	21.0	148
13	Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: Support composition and structure sensitivity. Journal of Catalysis, 2011, 283, 34-44.	6.2	140
14	Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. Journal of Catalysis, 2010, 276, 314-326.	6.2	136
15	Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale, 2012, 4, 2478.	5 . 6	131
16	Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction. Journal of Catalysis, 2017, 348, 100-109.	6.2	126
17	Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts. Catalysis Today, 2016, 264, 123-130.	4.4	124
18	Functionalized Carbon Nanotubes for Biomass Conversion: The Baseâ€Free Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid over Platinum Supported on a Carbon Nanotube Catalyst. ChemCatChem, 2015, 7, 2853-2863.	3.7	113

#	Article	IF	CITATIONS
19	Elucidating Interaction between Palladium and N-Doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation. ACS Catalysis, 2019, 9, 2893-2901.	11.2	101
20	Improved stability of Y2O3 supported Ni catalysts for CO2 methanation by precursor-determined metal-support interaction. Applied Catalysis B: Environmental, 2018, 237, 504-512.	20.2	99
21	\hat{I}^3 -Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. Journal of Catalysis, 2020, 381, 482-492.	6.2	98
22	Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water. Bioresource Technology, 2016, 211, 486-493.	9.6	94
23	Metallic Nanocatalysis: An Accelerating Seamless Integration with Nanotechnology. Small, 2015, 11, 268-289.	10.0	92
24	Heterojunctionâ€Assisted Co ₃ S ₄ @Co ₃ O ₄ Core–Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions. Small, 2017, 13, 1701724.	10.0	90
25	On the role of water in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on PtFe catalysts. Journal of Catalysis, 2018, 364, 192-203.	6.2	87
26	Achieving high performance electromagnetic wave attenuation: a rational design of silica coated mesoporous iron microcubes. Journal of Materials Chemistry C, 2014, 2, 7583.	5.5	75
27	Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces. Journal of Catalysis, 2018, 367, 194-205.	6.2	74
28	Global performance evaluation of solar cells using two models: from charge-transfer and recombination mechanisms to photoelectric properties. Journal of Materials Chemistry C, 2019, 7, 1934-1947.	5 . 5	73
29	Pressure-Induced Single-Walled Carbon Nanotube (<i>n,m</i>) Selectivity on Coâ^Mo Catalysts. Journal of Physical Chemistry C, 2007, 111, 14612-14616.	3.1	72
30	The thermodynamics analysis and experimental validation for complicated systems in CO 2 hydrogenation process. Journal of Energy Chemistry, 2016, 25, 1027-1037.	12.9	72
31	High-Performance Ni–Fe Redox Catalysts for Selective CH ₄ to Syngas Conversion via Chemical Looping. ACS Catalysis, 2018, 8, 1748-1756.	11.2	72
32	Identifying Influential Parameters of Octahedrally Coordinated Cations in Spinel ZnMn _{<i>x</i>} Co _{2–<i>x</i>} O ₄ Oxides for the Oxidation Reaction. ACS Catalysis, 2018, 8, 8568-8577.	11.2	68
33	Promoted aerobic oxidation of benzyl alcohol on CNT supported platinum by iron oxide. Chemical Communications, 2011, 47, 7473.	4.1	64
34	Biomass Oxidation: Formyl CH Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves. Angewandte Chemie - International Edition, 2015, 54, 8928-8933.	13.8	64
35	Promoting role of bismuth on carbon nanotube supported platinum catalysts in aqueous phase aerobic oxidation of benzyl alcohol. Applied Catalysis B: Environmental, 2016, 181, 118-126.	20.2	62
36	Bimetallic PtFe-Catalyzed Selective Hydrogenation of Furfural to Furfuryl Alcohol: Solvent Effect of Isopropanol and Hydrogen Activation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12722-12730.	6.7	61

#	Article	IF	Citations
37	Effect of different catalyst supports on the (n,m) selective growth of single-walled carbon nanotube from Co–Mo catalyst. Journal of Materials Science, 2009, 44, 3285-3295.	3.7	60
38	Enhanced activity and stability of Ni/La2O2CO3 catalyst for CO2 methanation by metal-carbonate interaction. Applied Catalysis B: Environmental, 2020, 277, 119271.	20.2	56
39	Palladium nanoparticles supported on manganese oxide–CNT composites for solvent-free aerobic oxidation of alcohols: Tuning the properties of Pd active sites using MnOx. Applied Catalysis B: Environmental, 2012, 119-120, 166-174.	20.2	55
40	Single Co Sites in Ordered SiO ₂ Channels for Boosting Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2022, 12, 2632-2638.	11.2	52
41	Sub-Surface Boron-Doped Copper for Methane Activation and Coupling: First-Principles Investigation of the Structure, Activity, and Selectivity of the Catalyst. Journal of Physical Chemistry C, 2017, 121, 1099-1112.	3.1	50
42	Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst. Catalysis Today, 2019, 330, 92-100.	4.4	50
43	In situ growth of Au nanoparticles on Fe2O3 nanocrystals for catalytic applications. CrystEngComm, 2012, 14, 7229.	2.6	48
44	MoO ₃ -Containing Protonated Nitrogen Doped Carbon as a Bifunctional Catalyst for One-Step Synthesis of 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2018, 6, 284-291.	6.7	48
45	Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture. Energies, 2016, 9, 431.	3.1	42
46	Electrocatalytic Oxidation of Small Molecule Alcohols over Pt, Pd, and Au Catalysts: The Effect of Alcohol's Hydrogen Bond Donation Ability and Molecular Structure Properties. Catalysts, 2019, 9, 387.	3. 5	42
47	Introducing Asymmetry Induced by Benzene Substitution in a Rigid Fused Ï€ Spacer of Dâ^'π–A-Type Solar Cells: A Computational Investigation. Journal of Physical Chemistry C, 2019, 123, 4007-4021.	3.1	41
48	Synergistic Contribution of the Acidic Metal Oxide–Metal Couple and Solvent Environment in the Selective Hydrogenolysis of Glycerol: A Combined Experimental and Computational Study Using ReO _{<i>x</i>xxxxxxx}	11.2	40
49	Catalytic oxidation of cellobiose over TiO ₂ supported gold-based bimetallic nanoparticles. Catalysis Science and Technology, 2015, 5, 2393-2405.	4.1	39
50	Enhanced photoelectric and photocatalysis performances of quinacridone derivatives by forming D-Ï€-A-A structure. Solar Energy, 2020, 201, 872-883.	6.1	39
51	Oxidative dehydrogenation of light alkanes with carbon dioxide. Green Chemistry, 2021, 23, 689-707.	9.0	39
52	Controlled incorporation of nanoparticles in metal–organic framework hybrid thin films. Chemical Communications, 2014, 50, 4296.	4.1	38
53	Titaniaâ€Supported Gold Nanoparticles as Efficient Catalysts for the Oxidation of Cellobiose to Organic Acids in Aqueous Medium. ChemCatChem, 2014, 6, 2105-2114.	3.7	36
54	Liquidâ€phase hydrogenation of cinnamaldehyde over Cuâ€Au/SiO ₂ catalysts. AICHE Journal, 2014, 60, 3300-3311.	3.6	35

#	Article	IF	CITATIONS
55	Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation. Journal of Catalysis, 2021, 395, 105-116.	6.2	34
56	Tuning the Electronâ€Transport and Electronâ€Accepting Abilities of Dyes through Introduction of Different Ï€â€Conjugated Bridges and Acceptors for Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2017, 18, 366-383.	2.1	33
57	A CuMn ₂ O ₄ spinel oxide as a superior catalyst for the aerobic oxidation of 5-hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catalysis Science and Technology, 2021, 11, 1497-1509.	4.1	33
58	Atomic carbon adsorption on Ni nanoclusters: a DFT study. Theoretical Chemistry Accounts, 2011, 128, 17-24.	1.4	32
59	Effect of graphene between photoanode and sensitizer on the intramolecular and intermolecular electron transfer process. Physical Chemistry Chemical Physics, 2020, 22, 6391-6400.	2.8	32
60	Interface synergy between IrOx and H-ZSM-5 in selective C–O hydrogenolysis of glycerol toward 1,3-propanediol. Journal of Catalysis, 2019, 375, 339-350.	6.2	31
61	Nickel cobalt catalyst supported on TiO2-coated SiO2 spheres for CO2 methanation in a fluidized bed. International Journal of Hydrogen Energy, 2019, 44, 13443-13455.	7.1	31
62	Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces. Journal of Energy Chemistry, 2022, 64, 38-46.	12.9	30
63	Toward the decoration of Pt nanoparticles supported on carbon nanotubes with Fe oxides and its effect on the catalytic reaction. Applied Catalysis A: General, 2012, 435-436, 131-140.	4.3	29
64	Non-Fullerene Acceptor-Based Solar Cells: From Structural Design to Interface Charge Separation and Charge Transport. Polymers, 2017, 9, 692.	4.5	29
65	Cobalt in N-doped carbon matrix catalyst for chemoselective hydrogenation of nitroarenes. Applied Catalysis A: General, 2019, 580, 158-166.	4.3	28
66	Effect of Hydrotalcites Interlayer Water on Pt-Catalyzed Aqueous-Phase Selective Hydrogenation of Cinnamaldehyde. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2516-2524.	8.0	28
67	Microwave-assisted synthesis of PtRu/CNT and PtSn/CNT catalysts and their applications in the aerobic oxidation of benzyl alcohol in base-free aqueous solutions. Catalysis Science and Technology, 2013, 3, 328-338.	4.1	27
68	Engineering channels of metal–organic frameworks to enhance catalytic selectivity. Chemical Communications, 2019, 55, 11770-11773.	4.1	27
69	One-Step Approach to 2,5-Diformylfuran from Fructose over Molybdenum Oxides Supported on Carbon Spheres. ACS Sustainable Chemistry and Engineering, 2019, 7, 315-323.	6.7	27
70	Effect of Centrifugation on the Purity of Single-Walled Carbon Nanotubes from MCM-41 Containing Cobalt. Journal of Physical Chemistry C, 2008, 112, 17567-17575.	3.1	26
71	Enhancement of one- and two-photon absorption and visualization of intramolecular charge transfer of pyrenyl-contained derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 245, 118897.	3.9	26
72	How graphene strengthened molecular photoelectric performance of solar cells: A photo current-voltage assessment. Solar Energy, 2021, 213, 271-283.	6.1	25

#	Article	IF	CITATIONS
73	Mechanistic and kinetic studies on biodiesel production catalyzed by an efficient pyridinium based ionic liquid. Green Chemistry, 2015, 17, 4271-4280.	9.0	24
74	Hydrogen pre–reduction determined Co–silica interaction and performance of cobalt catalysts for propane dehydrogenation. Microporous and Mesoporous Materials, 2021, 323, 111187.	4.4	24
7 5	Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582, 117098.	4.3	23
76	On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone. Fuel, 2022, 314, 123074.	6.4	23
77	Cobalt(II) acetylacetonate complex immobilized on aminosilaneâ€modified SBAâ€15 as an efficient catalyst for epoxidation of <i>trans</i> à€stilbene with molecular oxygen. Applied Organometallic Chemistry, 2016, 30, 435-440.	3.5	20
78	A Shortcut Route to Close Nitrogen Cycle: Bio-Based Amines Production via Selective Deoxygenation of Chitin Monomers over Ru/C in Acidic Solutions. IScience, 2020, 23, 101096.	4.1	20
79	Investigation on thermal dechlorination and catalytic pyrolysis in a continuous process for liquid fuel recovery from mixed plastic wastes. Journal of Material Cycles and Waste Management, 2018, 20, 137-146.	3.0	19
80	Statistical Modelling and Analysis of the Aerobic Oxidation of Benzyl Alcohol over K–Mn/C Catalysts. Catalysis Letters, 2009, 128, 210-220.	2.6	18
81	Aerobic Oxidation of Benzyl Alcohol over Activated Carbon Supported Manganese and Vanadium Catalysts: Effect of Surface Oxygen-Containing Groups. Catalysis Letters, 2011, 141, 149-157.	2.6	18
82	Vapor-phase hydrogenation of dimethyl oxalate over a CNTsâ€"Cuâ€"SiO2 hybrid catalyst with enhanced activity and stability. RSC Advances, 2013, 3, 11782.	3.6	16
83	PCDTBT8â€Doped PffBT4Tâ€2ODâ€Based Ternary Solar Cells with Enhanced Openâ€Circuit Voltage, Fill Factor, and Charge Separation Efficiency. Solar Rrl, 2021, 5, 2100670.	5.8	16
84	Hydrothermally driven three-dimensional evolution of mesoporous hierarchical europium oxide hydrangea microspheres for non-enzymatic sensors of hydrogen peroxide detection. Environmental Science: Nano, 2016, 3, 701-706.	4.3	15
85	Highly selective gas-phase oxidation of ethanol to ethyl acetate over bi-functional Pd/zeolite catalysts. Green Chemistry, 2016, 18, 3048-3056.	9.0	15
86	A Non-sodium Synthesis of Highly Ordered V-MCM-41 and Its Catalytic Application in Isomerization. Catalysis Letters, 2009, 129, 478-485.	2.6	14
87	Understanding the role of hydrogen bonding in BrÃ, nsted acidic ionic liquid-catalyzed transesterification: a combined theoretical and experimental investigation. Physical Chemistry Chemical Physics, 2016, 18, 32723-32734.	2.8	14
88	Cuâ€"Ni coreâ€"shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	13
89	Double-anchoring organic dyes for dye-sensitized solar cells: the opto-electronic property and performance. New Journal of Chemistry, 2017, 41, 12808-12829.	2.8	13
90	Significant Improvements of Near-IR Absorption, Electron Injection, and Oxidized Regeneration on Organic Sensitizers for Solar Cells. Journal of Physical Chemistry C, 2021, 125, 13109-13122.	3.1	13

#	Article	IF	CITATIONS
91	Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2010, 114, 6704-6711.	3.1	12
92	Selectivity switching resulting in the formation of benzene by surface carbonates on ceria in catalytic gas-phase oxidation of benzyl alcohol. Chemical Communications, 2016, 52, 2827-2830.	4.1	11
93	Second-Order Nonlinear Optical Switch Manipulation of Photosensitive Layer by an External Electric Field Coupled with Graphene Quantum Dots. Journal of Physical Chemistry A, 2019, 123, 7401-7407.	2.5	11
94	Effect of Polymerization on the Charge-Transfer Mechanism in the One (Two)-Photon Absorption Process of D–A-Type Triphenylamine Derivatives. Journal of Physical Chemistry A, 2021, 125, 777-794.	2.5	11
95	Spatial Ensembles of Copper-Silica with Carbon Nanotubes as Ultrastable Nanostructured Catalysts for Selective Hydrogenation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27268-27276.	8.0	10
96	A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals. EcoMat, 2021, 3, .	11.9	9
97	Modified Ni-carbonate interfaces for enhanced CO2 methanation activity: Tuned reaction pathway and reconstructed surface carbonates. Journal of Catalysis, 2022, 413, 48-58.	6.2	9
98	Interim Anatase Coating Layer Stabilizes Rutile@Cr _{<i>x</i>} O _{<i>y</i>} Photoanode for Visibleâ€Lightâ€Driven Water Oxidation. ChemPhysChem, 2015, 16, 1352-1355.	2.1	8
99	Controlled Synthesis of 3D Nanoplateâ€Assembled La ₂ O ₃ Hierarchical Microspheres for Enzymeâ€Free Detection of Hydrogen Peroxide. Advanced Materials Interfaces, 2016, 3, 1500833.	3.7	8
100	Preparation of Anisotropic MnO2 Nanocatalysts for Selective Oxidation of Benzyl Alcohol and 5-Hydroxymethylfurfural. Transactions of Tianjin University, 2020, 26, 382-390.	6.4	8
101	Electro-catalytic oxidation of HMF to FDCA over RuO ₂ /MnO ₂ /CNT catalysts in base-free solution. New Journal of Chemistry, 2021, 45, 21285-21292.	2.8	8
102	Radius of Curvature Effect on the Selective Oxidation of Cyclohexene Over Highly Ordered V-MCM-41. Catalysis Letters, 2007, 117, 25-33.	2.6	7
103	Adlayer-substrate interactions in controlled growth of graphene/h-BN heterostructure on Ni(111) and Cu(111) surfaces. Applied Surface Science, 2019, 480, 154-161.	6.1	7
104	Non-oxidative propane dehydrogenation over Co/Ti-ZSM-5 catalysts: Ti species-tuned Co state and surface acidity. Microporous and Mesoporous Materials, 2022, 341, 112115.	4.4	6
105	CO2 methanation over \hat{I}^3 -Al2O3 nanosheets-stabilized Ni catalysts: Effects of MnOx and MoOx additives on catalytic performance and reaction pathway. Journal of CO2 Utilization, 2022, 63, 102113.	6.8	6
106	<i>IN SITU</i> FORMATION OF COBALT NANOCLUSTERS IN SOL–GEL SILICA FILMS FOR SINGLE-WALLED CARBON NANOTUBE GROWTH. Nano, 2009, 04, 99-106.	1.0	5
107	Preparation of silica as catalyst supports with controlled surface property using continuous flow reactor. Applied Catalysis A: General, 2019, 585, 117212.	4.3	5
108	Modulating the electronic property of Pt nanocatalyst on rGO by iron oxides for aerobic oxidation of glycerol. Catalysis Communications, 2020, 144, 106073.	3.3	5

#	Article	IF	Citations
109	How do structure and topology of the catalyst affect water promotion or inhibition effects?. Chem Catalysis, 2021, 1, 962-965.	6.1	5
110	Stereoselective cyclopropanation of enamides <i>via</i> C–C bond cleavage of cyclopropenes. Organic Chemistry Frontiers, 2022, 9, 1820-1825.	4.5	5
111	Triggering the Direct C–C Coupling of Gaseous CO into C ₂ Oxygenates by Synergizing Interfacial Interactions and Reversible Spatial Dynamic Confinement. Journal of Physical Chemistry C, 2022, 126, 8645-8654.	3.1	5
112	Experimental and Theoretical Investigation of the Photoelectrical Properties of Tetrabromophenol Blue- and Bromoxylenol Blue-Based Solar Cells. Journal of Nanomaterials, 2018, 2018, 1-13.	2.7	4
113	Mechanistic Study of Unprecedented Highly Regioselective Hydrocyanation of Terminal Alkynes: Insight into the Origins of the Regioselectivity and Ligand Effects. Journal of Computational Chemistry, 2020, 41, 279-289.	3.3	4
114	Distinct chemical fixation of CO2 enabled by exotic gold nanoclusters. Journal of Chemical Physics, 2021, 155, 054305.	3.0	4
115	A rigid planar low band gap polymer PTTDPP-DT-DTT for heterojunction solar cell: a study of density functional theory. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	3
116	Structure, stability, electronic, magnetic, and catalytic properties of monometallic Pd, Au, and bimetallic Pd–Au core-shell nanoparticles. Journal of Chemical Physics, 2018, 149, 244307.	3.0	3
117	Formation of Size Controllable Sub-nanometer Metallic Clusters by Pore Radius of Curvature Effect and the Stability Explained by Anchoring/Occlusion Effect. Studies in Surface Science and Catalysis, 2007, 172, 321-324.	1.5	2
118	Lithium Storage: An Air-Stable Densely Packed Phosphorene-Graphene Composite Toward Advanced Lithium Storage Properties (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	19.5	2
119	The effect of twisted D–D–π–A configuration on electron transfer and photo-physics characteristics. Molecular Physics, 2018, 116, 1179-1191.	1.7	2
120	Molecular engineering mechanism of organic photoactive layer by alkyl chains, 4-butoxyphenyl and cyanogroup. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 218, 142-154.	3.9	2
121	Tuning adlayer-substrate interactions of graphene/h-BN heterostructures on Cu(111)–Ni and Ni(111)–Cu surface alloys. RSC Advances, 2021, 11, 1916-1927.	3.6	2
122	Direct ringâ€open mechanism of pyridine formation by replacement of one carbon in benzene with one nitrogen atom. Journal of Physical Organic Chemistry, 2020, 33, e4061.	1.9	2
123	Chemoselective Oxidation of Glycerol over Platinumâ€Based Catalysts: toward the Role of Oxide Promoter. ChemCatChem, 0, , .	3.7	2
124	Novel Frequency Dispersion of Permeability in Nickel Ferrites with Different Amounts of Cobalt Doping. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1
125	A DFT Study of the Structures and Photoelectric Properties of Benzodithiopheneâ€Based Molecules by Replacing Sulfur with a Variety of Heteroatoms (O, N, P, Si, Se). ChemistrySelect, 2017, 2, 3838-3847.	1.5	1
126	Optimization and statistical analysis of Au-ZnO/Al2O3 catalyst for CO oxidation. Journal of Energy Chemistry, 2013, 22, 498-505.	12.9	0

#	Article	lF	CITATIONS
127	Frontispiece: Biomass Oxidation: Formyl CH Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0
128	Photoactuated Properties of Acetylene-Congeners Non-Metallic Dyes and Molecular Design for Solar Cells. Materials, 2018, 11, 2027.	2.9	0