
Firoozeh Hosseini-Esfahani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7035668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reliability and relative validity of an FFQ for nutrients in the Tehran Lipid and Glucose Study. Public Health Nutrition, 2010, 13, 654.	2.2	827
2	Reproducibility and Relative Validity of Food Group Intake in a Food Frequency Questionnaire Developed for the Tehran Lipid and Glucose Study. Journal of Epidemiology, 2010, 20, 150-158.	2.4	589
3	Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran Lipid and Glucose Study. British Journal of Nutrition, 2012, 108, 1109-1117.	2.3	246
4	Adherence to dietary recommendations and risk of metabolic syndrome: Tehran Lipid and Glucose Study. Metabolism: Clinical and Experimental, 2010, 59, 1833-1842.	3.4	125
5	White rice intake and incidence of type-2 diabetes: analysis of two prospective cohort studies from Iran. BMC Public Health, 2017, 17, 133.	2.9	56
6	Inverse association between fruit, legume, and cereal fiber and the risk of metabolic syndrome: Tehran Lipid and Glucose Study. Diabetes Research and Clinical Practice, 2011, 94, 276-283.	2.8	49
7	Fast food consumption and the risk of metabolic syndrome after 3-years of follow-up: Tehran Lipid and Glucose Study. European Journal of Clinical Nutrition, 2013, 67, 1303-1309.	2.9	48
8	Does Dietary Intake by Tehranian Adults Align with the 2005 Dietary Guidelines for Americans? Observations from the Tehran Lipid and Glucose Study. Journal of Health, Population and Nutrition, 2011, 29, 39-52.	2.0	44
9	Trends in Risk Factors for Cardiovascular Disease Among Iranian Adolescents: The Tehran Lipid and Glucose Study, 1999–2008. Journal of Epidemiology, 2011, 21, 319-328.	2.4	44
10	The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review. International Journal of Endocrinology and Metabolism, 2015, 13, e19073.	1.0	39
11	Mediterranean Dietary Pattern Adherence Modify the Association between FTO Genetic Variations and Obesity Phenotypes. Nutrients, 2017, 9, 1064.	4.1	39
12	Reference Values for Serum Zinc Concentration and Prevalence of Zinc Deficiency in Adult Iranian Subjects. Biological Trace Element Research, 2012, 149, 307-314.	3.5	36
13	Gender differences in the relationship between serum zinc concentration and metabolic syndrome. Annals of Human Biology, 2014, 41, 436-442.	1.0	35
14	Acrylamide content of collected food products from Tehran's market: a risk assessment study. Environmental Science and Pollution Research, 2020, 27, 30558-30570.	5.3	35
15	Magnesium intake and prevalence of metabolic syndrome in adults: Tehran Lipid and Glucose Study. Public Health Nutrition, 2012, 15, 693-701.	2.2	32
16	Dietary patterns interact with <i>APOA1</i> / <i>APOC3</i> polymorphisms to alter the risk of the metabolic syndrome: the Tehran Lipid and Glucose Study. British Journal of Nutrition, 2015, 113, 644-653.	2.3	32
17	Dietary Quality among Tehranian Adults in Relation to Lipid Profile: Findings from the Tehran Lipid and Glucose Study. Journal of Health, Population and Nutrition, 2013, 31, 37-48.	2.0	30
18	Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study. Nutrition and Metabolism, 2011, 8, 50.	3.0	29

#	Article	IF	CITATIONS
19	Effect of interactions of polymorphisms in the Melanocortinâ€4 receptor gene with dietary factors on the risk of obesity and Type 2 diabetes: a systematic review. Diabetic Medicine, 2016, 33, 1026-1034.	2.3	29
20	Low carbohydrate diet is associated with reduced risk of metabolic syndrome in Tehranian adults. International Journal of Food Sciences and Nutrition, 2017, 68, 358-365.	2.8	29
21	The effect of interaction between Melanocortin-4 receptor polymorphism and dietary factors on the risk of metabolic syndrome. Nutrition and Metabolism, 2016, 13, 35.	3.0	28
22	Nutritional Knowledge, Attitude and Practice of Tehranian Adults and Their Relation to Serum Lipid and Lipoproteins: Tehran Lipid and Glucose Study. Annals of Nutrition and Metabolism, 2010, 56, 233-240.	1.9	26
23	The Effect of Community-Based Education for Lifestyle Intervention on The Prevalence of Metabolic Syndrome and Its Components: Tehran Lipid and Glucose Study. International Journal of Endocrinology and Metabolism, 2013, 11, 145-53.	1.0	23
24	The interaction of fat mass and obesity associated gene polymorphisms and dietary fiber intake in relation to obesity phenotypes. Scientific Reports, 2017, 7, 18057.	3.3	22
25	The Association Between Empirical Dietary Inflammatory Pattern and Metabolic Phenotypes in Overweight/Obese Adults. International Journal of Endocrinology and Metabolism, 2018, 16, e60048.	1.0	22
26	Dietary fatty acid composition and metabolic syndrome in Tehranian adults. Nutrition, 2011, 27, 1002-1007.	2.4	21
27	The association of dietary patterns and adherence to WHO healthy diet with metabolic syndrome in children and adolescents: Tehran lipid and glucose study. BMC Public Health, 2019, 19, 1457.	2.9	21
28	Empirical dietary inflammatory pattern and risk of metabolic syndrome and its components: Tehran Lipid and Glucose Study. Diabetology and Metabolic Syndrome, 2019, 11, 16.	2.7	21
29	Associations between dietary antioxidant intakes and cardiovascular disease. Scientific Reports, 2022, 12, 1504.	3.3	21
30	Factors associated with pre-diabetes in Tehranian men and women: A structural equations modeling. PLoS ONE, 2017, 12, e0188898.	2.5	20
31	Red meat and dietary iron intakes are associated with some components of metabolic syndrome: Tehran Lipid and Glucose Study. Journal of Translational Medicine, 2019, 17, 313.	4.4	20
32	Metabolic syndrome profiles, obesity measures and intake of dietary fatty acids in adults: <scp>T</scp> ehran <scp>L</scp> ipid and <scp>G</scp> lucose <scp>S</scp> tudy. Journal of Human Nutrition and Dietetics, 2014, 27, 98-108.	2.5	18
33	Nutrition and Diabetes, Cardiovascular and Chronic Kidney Diseases: Findings from 20 Years of the Tehran Lipid and Glucose Study. International Journal of Endocrinology and Metabolism, 2018, 16, e84791.	1.0	18
34	Which Food Patterns Are Predictors of Obesity in Tehranian Adults?. Journal of Nutrition Education and Behavior, 2012, 44, 564-573.	0.7	17
35	Genetic variations of cholesteryl ester transfer protein and diet interactions in relation to lipid profiles and coronary heart disease: a systematic review. Nutrition and Metabolism, 2017, 14, 77.	3.0	17
36	Nutrient Intake and Deficiency of Patients 1ÂYear After Bariatric Surgery: Tehran Obesity Treatment Study (TOTS). Journal of Gastrointestinal Surgery, 2021, 25, 911-918.	1.7	16

#	Article	IF	CITATIONS
37	Metabolic Syndrome: Twenty Years of the Tehran Lipid and Glucose Study Findings. International Journal of Endocrinology and Metabolism, 2018, In Press, e84771.	1.0	16
38	Associations of Pre-Defined Dietary Patterns with Obesity Associated Phenotypes in Tehranian Adolescents. Nutrients, 2016, 8, 505.	4.1	15
39	Nutrition and Cardio-Metabolic Risk Factors: 20 Years of the Tehran Lipid and Glucose Study Findings. International Journal of Endocrinology and Metabolism, 2018, In Press, e84772.	1.0	15
40	Western Dietary Pattern Interaction with APOC3 Polymorphism in the Risk of Metabolic Syndrome: Tehran Lipid and Glucose Study. Journal of Nutrigenetics and Nutrigenomics, 2014, 7, 105-117.	1.3	14
41	The association of priori and posteriori dietary patterns with the risk of incident hypertension: Tehran Lipid and Glucose Study. Journal of Translational Medicine, 2021, 19, 44.	4.4	14
42	Some dietary factors can modulate the effect of the zinc transporters 8 polymorphism on the risk of metabolic syndrome. Scientific Reports, 2017, 7, 1649.	3.3	13
43	Evaluating the interaction of common FTO genetic variants, added sugar, and trans-fatty acid intakes in altering obesity phenotypes. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29, 474-480.	2.6	13
44	Dietary patterns modify the association between fat mass and obesity-associated genetic variants and changes in obesity phenotypes. British Journal of Nutrition, 2019, 121, 1247-1254.	2.3	13
45	Low carbohydrate diet score does not predict metabolic syndrome in children and adolescents: Tehran Lipid and Glucose Study. Archives of Iranian Medicine, 2014, 17, 417-22.	0.6	13
46	The Effects of a Community-Based Lifestyle Intervention on Metabolic Syndrome and Its Components in Adolescents: Findings of a Decade Follow-Up. Metabolic Syndrome and Related Disorders, 2018, 16, 215-223.	1.3	12
47	Relationship of food security with Type 2 diabetes and its risk factors in Tehranian adults. International Journal of Preventive Medicine, 2015, 6, 98.	0.4	12
48	The Effect of Interactions of Single Nucleotide Polymorphisms of APOA1/APOC3 with Food Group Intakes on the Risk of Metabolic Syndrome. Avicenna Journal of Medical Biotechnology, 2017, 9, 94-103.	0.3	11
49	Does the diet of Tehranian adults ensure compliance with nutritional targets? Observations from the Tehran Lipid and Glucose Study. Public Health Nutrition, 2011, 14, 1539-1548.	2.2	10
50	Food Patterns and Framingham Risk Score in Iranian Adults: Tehran Lipid and Glucose Study: 2005–2011. Metabolic Syndrome and Related Disorders, 2018, 16, 64-71.	1.3	9
51	Long-Term Effectiveness of a Lifestyle Intervention: A Pragmatic Community Trial to Prevent Metabolic Syndrome. American Journal of Preventive Medicine, 2019, 56, 437-446.	3.0	9
52	<p>The Association of Dietary Polyphenol Intake with the Risk of Type 2 Diabetes: Tehran Lipid and Glucose Study</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 1643-1652.	2.4	9
53	Metabolic Syndrome and its Association with Healthy Eating Index-2005 in Adolescents: Tehran Lipid and Glucose Study. Journal of Food and Nutrition Research (Newark, Del), 2014, 2, 155-161.	0.3	9
54	Pediatric reference values for serum zinc concentration in Iranian subjects and an assessment of their dietary zinc intakes. Clinical Biochemistry, 2012, 45, 1254-1256.	1.9	8

#	Article	IF	CITATIONS
55	Is the metabolic syndrome inversely associates with butter, non-hydrogenated- and hydrogenated-vegetable oils consumption: Tehran lipid and glucose study. Diabetes Research and Clinical Practice, 2016, 112, 20-29.	2.8	8
56	Nutrient patterns and cardiometabolicÂrisk factors among Iranian adults: Tehran lipid and glucose study. BMC Public Health, 2020, 20, 653.	2.9	8
57	Intra-erythrocyte Magnesium Is Associated with Gamma-Glutamyl Transferase in Obese Children and Adolescents. Biological Trace Element Research, 2011, 143, 835-843.	3.5	7
58	Using Machine Learning Techniques to Predict Factors Contributing to the Incidence of Metabolic Syndrome in Tehran: Cohort Study. JMIR Public Health and Surveillance, 2021, 7, e27304.	2.6	7
59	Patterns of food consumption and risk of type 2 diabetes in an Iranian population: A nested case–control study. Nutrition and Dietetics, 2016, 73, 169-176.	1.8	6
60	The interaction between dietary patterns and melanocortin-4 receptor polymorphisms in relation to obesity phenotypes. Obesity Research and Clinical Practice, 2020, 14, 249-256.	1.8	6
61	A nutrient pattern characterized by vitamin A, C, B6, potassium, and fructose is associated with reduced risk of insulinâ€related disorders: A prospective study among participants of Tehran lipid and glucose study. Diabetology and Metabolic Syndrome, 2021, 13, 12.	2.7	6
62	Dietary diversity modifies the association between FTO polymorphisms and obesity phenotypes. International Journal of Food Sciences and Nutrition, 2021, 72, 997-1007.	2.8	6
63	Dietary intakes of zinc and copper and cardiovascular risk factors in <scp>T</scp> ehranian adults: <scp>T</scp> ehran <scp>L</scp> ipid and <scp>G</scp> lucose <scp>S</scp> tudy. Nutrition and Dietetics, 2013, 70, 218-226.	1.8	5
64	The interaction of cholesteryl ester transfer protein gene variations and diet on changes in serum lipid profiles. European Journal of Clinical Nutrition, 2019, 73, 1291-1298.	2.9	4
65	Cholesteryl ester transfer protein gene variations and macronutrient intakes interaction in relation to metabolic syndrome: Tehran lipid and glucose study. Iranian Journal of Basic Medical Sciences, 2018, 21, 586-592.	1.0	4
66	Dietary factors influence the association of cyclin D2 polymorphism rs11063069 with the risk of metabolic syndrome. Nutrition Research, 2018, 52, 48-56.	2.9	3
67	The association of dietary macronutrients with anthropometric changes, using iso-energetic substitution models: Tehran lipid and glucose study. Nutrition and Metabolism, 2019, 16, 83.	3.0	2
68	The association of dietary macronutrients composition with the incidence of cardiovascular disease, using iso-energetic substitution models: Tehran lipid and glucose study. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 2186-2193.	2.6	2
69	The resemblance of dietary intakes in three generations of parent-offspring pairs: Tehran lipid and glucose study. Appetite, 2022, 169, 105794.	3.7	2
70	Resemblance of nutrient intakes in three generations of parent-offspring pairs: Tehran lipid and Glucose Study. PLoS ONE, 2022, 17, e0266941.	2.5	2
71	Evaluating machine learning-powered classification algorithms which utilize variants in the GCKR gene to predict metabolic syndrome: Tehran Cardio-metabolic Genetics Study. Journal of Translational Medicine, 2022, 20, 164.	4.4	1
72	Meat Food Group Intakes and the Risk of Type 2 Diabetes Incidence. Frontiers in Nutrition, 0, 9, .	3.7	1

#	Article	IF	CITATIONS
73	The association of dietary macronutrients composition with the incidence of type 2 diabetes, using iso-energetic substitution models: Tehran Lipid and Glucose Study. Primary Care Diabetes, 2021, 15, 1080-1085.	1.8	0