List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7035636/publications.pdf Version: 2024-02-01

227 papers	7,124 citations	57758 44 h-index	82547 72 g-index
227	227	227	4727
all docs	docs citations	times ranked	citing authors

IN LC HON

#	Article	IF	CITATIONS
1	Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51, 3293-3307.	7.9	508
2	Mechanisms of slip mode modification in F.C.C. solid solutions. Acta Metallurgica Et Materialia, 1990, 38, 1581-1594.	1.8	293
3	Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering C, 2014, 41, 17-27.	7.3	261
4	Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging. Scripta Materialia, 2003, 49, 333-338.	5.2	227
5	Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (<i>Costus pictus) Tj ETQq1 Sciences: Nanoscience and Nanotechnology, 2018, 9, 015008.</i>	1 0.784314 1.5	4 rgBT /Ove 169
6	Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3155-3164.	2.2	162
7	Microstructural stability and mechanical response of Cu–Ag microcomposite wires. Acta Materialia, 1998, 46, 4111-4122.	7.9	144
8	Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 250-258.	3.9	138
9	Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Materials & Design, 2013, 47, 590-598.	5.1	123
10	Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Materialia, 2020, 194, 366-377.	7.9	117
11	Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys. Journal of Alloys and Compounds, 2018, 743, 115-125.	5.5	107
12	Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 569-576.	5.6	96
13	Dynamic deformation behavior of Alî—,Znî—,Mgî—,Cu alloy matrix composites reinforced with 20 Vol.% SiC. Acta Metallurgica Et Materialia, 1993, 41, 2337-2351.	1.8	93
14	Effects of strain hardenability and strain-rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing. Journal of Materials Research, 2001, 16, 856-864.	2.6	90
15	Mechanical stability and electrical conductivity of Cu–Ag filamentary microcomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 264, 151-158.	5.6	86
16	Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant () Tj ETQq0 0 0 Powder Technology, 2018, 29, 1685-1694.	rgBT /Ove 4.1	rlock 10 Tf 5 83
17	Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Materials Letters, 2014, 128, 170-174.	2.6	78
18	On the strain rate-dependent deformation mechanism of CoCrFeMnNi high-entropy alloy at liquid	8.7	78

nigh-entropy alloy at liqu nitrogen temperature. Materials Research Letters, 2017, 5, 472-477. 18

2

#	Article	IF	CITATIONS
19	Synthesis of highly active biocompatible ZrO2 nanorods using a bioextract. Ceramics International, 2020, 46, 25915-25920.	4.8	74
20	Green Synthesis of Magnesium Oxide Nanoparticles. Advanced Materials Research, 0, 952, 141-144.	0.3	71
21	A model of the ductile–brittle transition of partially crystallized amorphous Al–Ni–Y alloys. Acta Materialia, 1999, 47, 2059-2066.	7.9	70
22	On the stability of cold drawn, two-phase wires. Acta Metallurgica Et Materialia, 1995, 43, 3313-3323.	1.8	68
23	Effect of heat treatment on tensile deformation characteristics and properties of Al3003/STS439 clad composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 1-8.	5.6	67
24	Mechanochemical joining in cold roll-cladding of tri-layered Cu/Al/Cu composite and the interface cracking behavior. Materials & Design, 2014, 57, 625-631.	5.1	67
25	Spatial control of protein within biomimetically nucleated mineral. Biomaterials, 2006, 27, 1175-1186.	11.4	66
26	Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites. Materials & Design, 2013, 49, 935-944.	5.1	63
27	Marigold flower like structured Cu2NiSnS4 electrode for high energy asymmetric solid state supercapacitors. Scientific Reports, 2020, 10, 19198.	3.3	61
28	Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Materials Chemistry and Physics, 2021, 262, 124265.	4.0	61
29	Green Synthesis of Spinel Magnetite Iron Oxide Nanoparticles. Advanced Materials Research, 0, 1051, 39-42.	0.3	60
30	Heterostructured SmCoO3/rGO composite for high-energy hybrid supercapacitors. Carbon, 2021, 172, 613-623.	10.3	59
31	Ductility and strain rate sensitivity of Zircaloy-4 nuclear fuel claddings. Journal of Nuclear Materials, 2001, 295, 21-26.	2.7	58
32	Dislocation creep behavior of CoCrFeMnNi high entropy alloy at intermediate temperatures. Materials Research Letters, 2018, 6, 689-695.	8.7	58
33	Deformation processing and strength/conductivity properties of Cu–Fe–Ag microcomposites. Journal of Alloys and Compounds, 2005, 388, 69-74.	5.5	56
34	Large scale synthesis of hydroxyapatite nanospheres by high gravity method. Chemical Engineering Journal, 2011, 173, 846-854.	12.7	55
35	Nd2O3: novel synthesis and characterization. Journal of Sol-Gel Science and Technology, 2015, 73, 511-517.	2.4	54
36	Interactive deformation and enhanced ductility of tri-layered Cu/Al/Cu clad composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 976-986.	5.6	54

#	Article	lF	CITATIONS
37	Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys. Materials Chemistry and Physics, 2018, 210, 120-125.	4.0	54
38	A TEM study of dislocation structures in fatigued Cu-16 at.% A1 single crystals. Acta Metallurgica Et Materialia, 1990, 38, 2261-2274.	1.8	53
39	Three-layered SS321/AA1050/AA5083 explosive welds: Effect of PWHT on the interface evolution and its mechanical strength. International Journal of Pressure Vessels and Piping, 2020, 188, 104216.	2.6	53
40	Hierarchically activated deformation mechanisms to form ultra-fine grain microstructure in carbon containing FeMnCoCr twinning induced plasticity high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141803.	5.6	51
41	Heavily drawn Cu–Fe–Ag and Cu–Fe–Cr microcomposites. Journal of Materials Processing Technology, 2001, 113, 610-616.	6.3	50
42	Stress-induced reorientation of hydrides and mechanical properties of Zircaloy-4 cladding tubes. Journal of Nuclear Materials, 2005, 340, 203-208.	2.7	49
43	Influence of dynamic strain aging on the dislocation substructure in a uniaxial tension test. Materials Science and Engineering, 1986, 79, 1-7.	0.1	48
44	Influence of fluorine substitution on the morphology and structure ofÂhydroxyapatite nanocrystals prepared by hydrothermal method. Materials Chemistry and Physics, 2013, 137, 967-976.	4.0	48
45	Cyclic deformation behaviour of Cu-16at.%Al single crystals part II: Cyclic hardening and slip band behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 128, 55-75.	5.6	47
46	Elongation minimum and strain rate sensitivity minimum of zircaloy-4. Journal of Nuclear Materials, 1983, 116, 314-316.	2.7	46
47	Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 805-809.	5.6	46
48	Template-Free Growth of Novel Hydroxyapatite Nanorings: Formation Mechanism and Their Enhanced Functional Properties. Crystal Growth and Design, 2012, 12, 3565-3574.	3.0	44
49	Roll-Bonded Tri-Layered Mg/Al/Stainless Steel Clad Composites and their Deformation and Fracture Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3890-3900.	2.2	44
50	Thermally activated deformation of Zircaloy-4. Journal of Nuclear Materials, 1984, 120, 1-5.	2.7	43
51	Bi ₂ WO ₆ and FeWO ₄ Nanocatalysts for the Electrochemical Water Oxidation Process. ACS Omega, 2019, 4, 5241-5253.	3.5	43
52	Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures. Journal of Alloys and Compounds, 2022, 897, 163217.	5.5	43
53	Effect of the circumferential hydrides on the deformation and fracture of Zircaloy cladding tubes. Journal of Nuclear Materials, 2002, 303, 169-176.	2.7	42
54	Novel Zirconium Nitride and Hydroxyapatite Nanocomposite Coating: Detailed Analysis and Functional Properties. ACS Applied Materials & Interfaces, 2014, 6, 9850-9857.	8.0	42

#	Article	IF	CITATIONS
55	High strength dual fcc phase CoCuFeMnNi high-entropy alloy wires with dislocation wall boundaries stabilized by phase boundaries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141875.	5.6	42
56	Microstructural stability of Cu–Nb microcomposite wires fabricated by the bundling and drawing process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 281, 189-197.	5.6	41
57	Effect of interfacial intermetallic compounds evolution on the mechanical response and fracture of layered Ti/Cu/Ti clad materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138802.	5.6	41
58	Multifunctional properties of hydroxyapatite/titania bio-nano-composites: bioactivity and antimicrobial studies. Powder Technology, 2012, 228, 410-415.	4.2	39
59	Strain-rate sensitivity of high-entropy alloys and its significance in deformation. Materials Research Letters, 2019, 7, 503-509.	8.7	39
60	Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process. Scripta Materialia, 2001, 44, 2509-2515.	5.2	38
61	Microstructure evolution and mechanical properties of (CoCrNi)90(AlTiZr)5(CuFeMo)5 multicomponent alloy: A pathway through multicomponent alloys toward new superalloys. Journal of Alloys and Compounds, 2021, 860, 158412.	5.5	38
62	FATIGUE CRACK INITIATION AND GROWTH BEHAVIOR OF Cu-16 at.% A1 SINGLE CRYSTALS. Fatigue and Fracture of Engineering Materials and Structures, 1991, 14, 143-169.	3.4	37
63	Yield strength of a heavily drawn Cu-20% Nb filamentary microcomposite. Scripta Materialia, 1998, 39, 1685-1691.	5.2	37
64	Strength and electrical conductivity of Cu–9Fe–1.2Co filamentary microcomposite wires. Journal of Alloys and Compounds, 2000, 311, 265-269.	5.5	37
65	Strength and conductivity of Cu-9Fe-1.2X (X = Ag or Cr) filamentary microcomposite wires. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 985-991.	2.2	37
66	Circumferential creep properties of stress-relieved Zircaloy-4 and Zr–Nb–Sn–Fe cladding tubes. Journal of Nuclear Materials, 2009, 392, 63-69.	2.7	37
67	Enhancement of plasticity in Zr-base bulk metallic glass by soft metal plating. Scripta Materialia, 2009, 61, 481-484.	5.2	36
68	Electrochemical Performance of β-Nis@Ni(OH) ₂ Nanocomposite for Water Splitting Applications. ACS Omega, 2019, 4, 10302-10310.	3.5	36
69	Influence of dynamic strain aging on the apparent activation volume for deformation. Materials Science and Engineering, 1985, 76, 77-81.	0.1	35
70	Nanoscale modulated structures by balanced distribution of atoms and mechanical/structural stabilities in CoCuFeMnNi high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138120.	5.6	34
71	Interfacial and twin boundary structures of nanostructured Cu–Ag filamentary composites. Journal of Materials Research, 2003, 18, 2194-2202.	2.6	33
72	Hierarchical structured as-cast CrFeNiMn0.5Cu0.5 high entropy alloy with excellent tensile strength/ductility properties. Scripta Materialia, 2022, 210, 114473.	5.2	33

#	Article	IF	CITATIONS
73	Novel SmMn2O5 hollow long nano-cuboids for electrochemical supercapacitor and water splitting applications. Vacuum, 2019, 166, 279-285.	3.5	32
74	Experimental investigation and phase diagram of CoCrMnNi–Fe system bridging high-entropy alloys and high-alloyed steels. Journal of Alloys and Compounds, 2019, 785, 320-327.	5.5	32
75	Microstructure and stress—strain responses of AlMgSi alloy matrix composites reinforced with 10 vol.% Al2O3 particulates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 221, 38-47.	5.6	31
76	Deformation processing and mechanical properties of Cu–Cr–X (X=Ag or Co) microcomposites. Journal of Materials Processing Technology, 2002, 130-131, 272-277.	6.3	30
77	Ecofriendly Biosynthesis of Zinc Oxide and Magnesium Oxide Particles from Medicinal Plant Pisonia grandis R.Br. Leaf Extract and Their Antimicrobial Activity. BioNanoScience, 2019, 9, 141-154.	3.5	30
78	Effect of sulphur on the strengthening of a Zr–Nb alloy. Journal of Nuclear Materials, 2008, 373, 16-21.	2.7	29
79	Cyclic stress-strain response and slip mode modification in fatigue of f.c.c. solid solutions. Scripta Materialia, 2001, 44, 995-1001.	5.2	28
80	Enhanced cell viability of hydroxyapatite nanowires by surfactant mediated synthesis and its growth mechanism. RSC Advances, 2016, 6, 25070-25081.	3.6	28
81	Strengthening and fracture of deformation-processed dual fcc-phase CoCrFeCuNi and CoCrFeCu1.71Ni high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 781, 139241.	5.6	28
82	Structural characterization of Laves-phase MgZn2 precipitated in Mg-Zn-Y alloy. Metals and Materials International, 2010, 16, 171-174.	3.4	27
83	Design of high strength Cu alloy interlayer for mechanical bonding Ti to steel and characterization of their tri-layered clad. Materials & Design, 2013, 51, 293-299.	5.1	27
84	Ni doped Bi2WO6 for electrochemical OER activity. International Journal of Hydrogen Energy, 2020, 45, 18859-18866.	7.1	27
85	Effects of carbon and molybdenum on the nanostructural evolution and strength/ductility trade-off in Fe40Mn40Co10Cr10 high-entropy alloys. Journal of Alloys and Compounds, 2022, 911, 165108.	5.5	27
86	Influence of dynamic strain aging on the stress exponent and the dislocation substructure for the creep of Alî—,Mg alloys. Materials Science and Engineering, 1986, 82, 175-185.	0.1	26
87	Thermo-mechanical processing and properties of Cu–Fe–Cr microcomposites. Journal of Materials Processing Technology, 2002, 130-131, 278-282.	6.3	26
88	Hydride formation by high temperature cathodic hydrogen charging method and its effect on the corrosion behavior of Zircaloy-4 tubes in acid solution. Journal of Nuclear Materials, 1998, 256, 124-130.	2.7	25
89	Microstructural and mechanical stability of Cu-6 wt. % Ag alloy. Journal of Materials Science, 2000, 35, 4557-4561.	3.7	25
90	Thermo-mechanical processing and properties of Cu–9Fe–1.2Co microcomposite wires. Scripta Materialia, 2001, 45, 1295-1300.	5.2	25

#	Article	IF	CITATIONS
91	Criteria for predicting twin-induced plasticity in solid solution copper alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 492-497.	5.6	25
92	Grain boundary transition associated intergranular failure analysis at TMAZ/SZ interface of dissimilar AA7475-AA2198 joints by friction stir welding. Materials Letters, 2020, 280, 128557.	2.6	25
93	Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template. Journal of Materials Research, 2008, 23, 478-485.	2.6	24
94	Copper-Iron Filamentary Microcomposites. Advanced Engineering Materials, 2001, 3, 475-479.	3.5	23
95	Nanostructural analysis of trabecular bone. Journal of Materials Science: Materials in Medicine, 2009, 20, 1419-1426.	3.6	23
96	Dynamic mechanical response of a 1060 Al/Al2O3 composite. Journal of Materials Science, 1994, 29, 2987-2992.	3.7	22
97	Precipitation and decomposition in CoCrFeMnNi high entropy alloy at intermediate temperatures under creep conditions. Materialia, 2019, 8, 100445.	2.7	22
98	Influence of interface structure and stress distribution on fracture and mechanical performance of STS439/Al1050/STS304 clad composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 35-47.	5.6	22
99	Comparative Insight into the Interfacial Phase Evolutions during Solution Treatment of Dissimilar Friction Stir Welded AA2198-AA7475 and AA2198-AA6013 Aluminum Sheets. Materials, 2021, 14, 1290.	2.9	22
100	Influence of dynamic strain aging on the creep ductility of solid solution alloys. Materials Science and Engineering, 1987, 91, 137-142.	0.1	21
101	Modification of microstructure and strength/conductivity properties of Cu-15 Ag in-situ composites by equal-channel angular pressing. Metals and Materials International, 2012, 18, 355-360.	3.4	21
102	Structural, compositional and textural properties of monoclinic α-Bi2O3 nanocrystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 144, 281-286.	3.9	21
103	Interface strengthening of a roll-bonded two-ply Al/Cu sheet by short annealing. Materials Characterization, 2021, 174, 111021.	4.4	21
104	Y2O3 nanorods for cytotoxicity evaluation. Ceramics International, 2020, 46, 20553-20557.	4.8	21
105	Formation mechanism of high-entropy spinel thin film and its mechanical and magnetic properties: Linking high-entropy alloy to high-entropy ceramic. Applied Surface Science, 2022, 576, 151719.	6.1	21
106	Influence of dynamic strain aging on the transition of creep characteristics of a solid solution alloy at various temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 110, 125-130.	5.6	20
107	Faceted fatigue fracture and its relation to the crystallographic slip systems in Cu-16 at. Pct al single crystals. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 415-425.	1.4	19
108	Mechanical properties of Cu-Nb microcomposites fabricated by the bundling and drawing process. Scripta Materialia, 2000, 42, 737-742.	5.2	19

#	Article	IF	CITATIONS
109	Fabrication and electrochemical OER activity of Ag doped MoO3 nanorods. Materials Science in Semiconductor Processing, 2020, 107, 104818.	4.0	19
110	Effect of Nb content on the strength of Cu–Nb filamentary microcomposites. Journal of Materials Research, 2000, 15, 1889-1893.	2.6	18
111	Design and mechanical characterization of a Zr–Nb–O–P alloy. Materials & Design, 2011, 32, 4270-4277.	5.1	18
112	Amorphization and nanocrystallization of Ni–Nb-Si Alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 396-401.	5.6	17
113	Modifications of partial-dislocation-induced defects and strength/ductility enhancement in metastable high entropy alloys through nitrogen doping. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140684.	5.6	17
114	Process Modelling of Equal Channel Angular Pressing for Ultrafine Grained Materials. Materials Transactions, 2004, 45, 2172-2176.	1.2	16
115	The effects of alloying and pressing routes in equal channel angular pressing of Cu-Fe-Cr and Cu-Fe-Cr Ag composites. Metals and Materials International, 2009, 15, 733-739.	3.4	16
116	Estimating interface bonding strength in clad metals using digital image correlation. Scripta Materialia, 2013, 68, 893-896.	5.2	16
117	Neutral and alkaline chemical environment dependent synthesis of Mn3O4 for oxygen evolution reaction (OER). Materials Chemistry and Physics, 2020, 247, 122864.	4.0	16
118	Influence of dynamic strain aging on the apparent activation energy for creep. Materials Science and Engineering, 1984, 64, L19-L21.	0.1	15
119	On the creep activation energies of alloys. Materials Science and Engineering, 1987, 86, 211-218.	0.1	15
120	Title is missing!. Journal of Materials Science, 2002, 37, 1237-1245.	3.7	15
121	Coupled Analysis of Heat Transfer and Deformation in Equal Channel Angular Pressing of Al and Steel. Materials Transactions, 2009, 50, 40-43.	1.2	15
122	Green Synthesis of Zinc Oxide Nanoparticles. Advanced Materials Research, 0, 952, 137-140.	0.3	15
123	Effect of Intermetallic Compound Layer on Peel Strength and Crack Propagation Behavior in Cu/Al/Cu Clad Composites. Metals, 2019, 9, 1155.	2.3	15
124	Design and characterization of new Cu alloys to substitute Cu–25%Ni for coinage applications. Materials & Design, 2011, 32, 1790-1795.	5.1	14
125	Deformation and fracture of diffusion-bonded Cu–Ni–Zn/Cu–Cr layered composite. Materials & Design, 2015, 67, 42-49.	5.1	14
126	Binder free, robust and scalable CuO@GCE modified electrodes for efficient electrochemical water oxidation. Materials Chemistry and Physics, 2020, 239, 122321.	4.0	14

#	Article	IF	CITATIONS
127	Correlation between mechanical properties and thermodynamic parameters of dual-fcc-phase CoCrFeCuxNi (xÂ=Â1, 1.71) and CoCu1.71FeMnNi. Materials Letters, 2020, 272, 127866.	2.6	14
128	Mechanical properties and microstructure of commercial amorphous golf club heads made of Zr–Ti–Cu–Ni–Be bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 126-129.	5.6	13
129	Enhanced wear and fatigue properties of Ti–6Al–4V alloy modified by plasma carburizing/CrN coating. Journal of Materials Science: Materials in Medicine, 2007, 18, 925-931.	3.6	13
130	Creep properties of annealed Zr–Nb–O and stress-relieved Zr–Nb–Sn–Fe cladding tubes and their performance comparison. Journal of Nuclear Materials, 2010, 404, 154-159.	2.7	13
131	Temperature dependent slip mode modification in Cu–Al solid solution alloy single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 9-12.	5.6	13
132	Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas. Metals and Materials International, 2018, 24, 1285-1292.	3.4	13
133	Enhancement of tensile properties applying phase separation with Cu addition in gas tungsten arc welds of CoCrFeMnNi high entropy alloys. Scripta Materialia, 2022, 220, 114897.	5.2	13
134	Electrochemical water splitting exploration of MnCo ₂ O ₄ , NiCo ₂ O ₄ cobaltites. New Journal of Chemistry, 2020, 44, 17679-17692.	2.8	12
135	Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2457-2462.	2.2	11
136	Structural and toxic effect investigation of vanadium pentoxide. Materials Science and Engineering C, 2016, 65, 419-424.	7.3	11
137	Influence of microstructure modification on the circumferential creep of Zr–Nb–Sn–Fe cladding tubes. Journal of Nuclear Materials, 2016, 468, 171-177.	2.7	11
138	Highly dispersed SmMn ₂ O ₅ nanorods for electrochemical water oxidation reaction kinetics. Materials Research Express, 2019, 6, 095090.	1.6	11
139	Deformation Twins in a Cu-Ag Nanocomposite Processed by Equal Channel Angular Pressing (ECAP). Journal of Korean Institute of Metals and Materials, 2013, 51, 621-627.	1.0	11
140	Microforming of Bulk Metallic Glasses: Constitutive Modelling and Applications. Materials Transactions, 2004, 45, 1228-1232.	1.2	10
141	Ultrastructural observation of electron irradiation damage of lamellar bone. Journal of Materials Science: Materials in Medicine, 2009, 20, 959-965.	3.6	10
142	Mechanical Performance and Microstructural Evolution of (NiCo)75Cr17Fe8Cx (x = 0~0.83) Medium Entropy Alloys at Room and Cryogenic Temperatures. Metals, 2020, 10, 1646.	2.3	10
143	Designing rational and cheapest SeO2 electrocatalyst for long stable water splitting process. Journal of Physics and Chemistry of Solids, 2020, 145, 109544.	4.0	10
144	Creep behavior of copper-chromium in-situ composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 695-705.	2.2	9

#	Article	IF	CITATIONS
145	Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2267-2276.	2.2	9
146	Effect of Ni Interlayer on the Interface Toughening and Thermal Stability of Cu/Al/Cu Clad Composites. Metals and Materials International, 2019, 25, 94-104.	3.4	9
147	Investigation of PEG directed Sb2WO6 for dyes removal from wastewater. Chemosphere, 2022, 291, 132677.	8.2	9
148	Influence of solute-dislocation interaction on the superplastic behavior and ductility of Al-Mg alloys. Scripta Materialia, 1998, 40, 217-222.	5.2	8
149	Inorganic complex intermediate Co ₃ O ₄ nanostructures using green ligation from natural waste resources. RSC Advances, 2014, 4, 44495-44499.	3.6	8
150	Influence of processing method on the properties of hydroxyapatite nanoparticles in the presence of different citrate ion concentrations. Advanced Powder Technology, 2014, 25, 551-559.	4.1	8
151	Data on the microstructure and deformation of Fe50Mn25Cr15Co10Nx (x=0â^¼1.6) supporting the modifications of partial-dislocation-induced defects (PDIDs) and strength/ductility enhancement in metastable high entropy alloys. Data in Brief, 2021, 34, 106713.	1.0	8
152	Latent hardening behavior of cyclically deformed Cu-16 at.%Al single crystals. Acta Metallurgica Et Materialia, 1992, 40, 397-412.	1.8	7
153	Superplasticicity of Cu–16 at.% Ag microcomposites. Journal of Materials Research, 2001, 16, 1822-1828.	2.6	7
154	High-Temperature Deformability of a Fe-Cr-Mn-Ni Austenite Stainless Steel with High Nitrogen and High Carbon Contents. Metals, 2018, 8, 608.	2.3	7
155	Non-isothermal nano-crystallization kinetics in amorphous Ni55Nb35Si10 alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 358-364.	4.2	7
156	Hydrothermal Method–Derived MnMoO ₄ Crystals: Effect of Cationic Surfactant on Microstructures and Electrochemical Properties. ChemistrySelect, 2020, 5, 7728-7733.	1.5	7
157	Effect of Interfacial Reaction Layer on Mechanical Properties of 3-ply Mg/Al/STS Clad-metal. Journal of Korean Institute of Metals and Materials, 2011, 49, 664-670.	1.0	7
158	Data supporting the hierarchically activated deformation mechanisms to form ultra-fine grain microstructure in carbon containing FeMnCoCr twinning induced plasticity high entropy alloy. Data in Brief, 2022, 42, 108052.	1.0	7
159	Title is missing!. Journal of Materials Science, 2001, 36, 5881-5884.	3.7	6
160	Elevated temperature tensile properties and failure of a copper-chromium in situ composite. Journal of Materials Science, 2003, 38, 3437-3447.	3.7	6
161	Reorientation of Hydrides and Its Effect on the Mechanical Properties of Zr-Nb-Sn-Fe Cladding Tubes. Journal of Nuclear Science and Technology, 2005, 42, 219-224.	1.3	6
162	Rice husk ash nanosilica to inhibit human breast cancer cell line (3T3). Journal of Sol-Gel Science and Technology, 2014, 72, 198-205.	2.4	5

#	Article	IF	CITATIONS
163	Effect of pressing routes on the microstructure and strength in equal channel angular pressing of Cu-3.75Ag. Metals and Materials International, 2015, 21, 746-752.	3.4	5
164	Microstructure and Mechanical Properties of Equitomic CoCrFeCuNi High Entropy Alloy. Key Engineering Materials, 0, 765, 149-154.	0.4	5
165	Effect of residual nanocrystals on thermal stability and mechanical properties of metalloid-containing amorphous alloys. Materials Characterization, 2021, 173, 110914.	4.4	5
166	Interfacial structure of nanostructured Cu–Nb filamentary composite fabricated by the bundling and drawing process. Philosophical Magazine Letters, 2004, 84, 515-523.	1.2	4
167	High-temperature deformation behavior and stress relaxation of Zr–Ti–Cu–Ni–Be bulk metallic glass extracted from commercial golf club heads. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 130-133.	5.6	4
168	Mechanical behavior and microstructure of Cu54Zr22Ti18Ni6 bulk metallic glass at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 122-125.	5.6	4
169	Effect of phosphorus on the mechanical behavior of a Zr–Nb alloy. Journal of Nuclear Materials, 2009, 383, 270-273.	2.7	4
170	Deformation behavior of cold-rolled and annealed Zr–1.5Nb and Zr–1.5Nb–S alloys. Journal of Nuclear Materials, 2011, 414, 138-144.	2.7	4
171	Structural phase transitions in niobium oxide nanocrystals. Phase Transitions, 2015, 88, 897-906.	1.3	4
172	Incubation and aging effect on cassiterite type tetragonal rutile SnO2 nanocrystals. Journal of Materials Science: Materials in Electronics, 2015, 26, 2305-2310.	2.2	4
173	An environment benign biomimetic synthesis of mesoporous NiO concentric stacked doughnuts architecture. Microporous and Mesoporous Materials, 2015, 207, 185-194.	4.4	4
174	Strength and Fracture of Cu-Based Filamentary Nanocomposites. Key Engineering Materials, 2000, 183-187, 1207-1212.	0.4	3
175	Creep and High Temperature Fatigue Resistance of Ti-6Al-4V Modified by Duplex Plasma Carburization/CrN Coating. Solid State Phenomena, 2006, 118, 515-520.	0.3	3
176	EFFECT OF CRYSTALLIZATION AND SURFACE TREATMENT ON DEFORMATION AND FRACTURE OF Zr - Ti - Cu - Ni - Be BULK METALLIC GLASS. International Journal of Modern Physics B, 2009, 23, 1270-1275.	2.0	3
177	Nanocomposited and Functionally Graded ZrN/HA Coatings on cp-Ti by RF Magnetron Sputtering. Applied Mechanics and Materials, 0, 248, 37-42.	0.2	3
178	Apatite deposition and collagen coating effects in Ti-Al-V and Ti-Al-Nb alloys. Physics of Metals and Metallography, 2014, 115, 1307-1312.	1.0	3
179	The Nature of Intermetallic Compounds and its Effect on Mechanical Properties of Cu/Al/Cu Clad Metals. Advanced Materials Research, 0, 951, 87-91.	0.3	3
180	Mechanical performance of oxidized Zr-Nb-O nuclear cladding tubes. Physics of Metals and Metallography, 2014, 115, 1281-1284.	1.0	3

#	Article	IF	CITATIONS
181	Organic Datura metel Leaf Extract Mediated Inorganic Rare Earth La2O3 Nanocrystals Formation. Journal of Nanoscience and Nanotechnology, 2019, 19, 4033-4038.	0.9	3
182	Mechanical Reliability of Oxidized Zr–1Nb–1Sn–0.1Fe Alloy Nuclear Cladding Tubes. Advanced Science Letters, 2012, 15, 310-314.	0.2	3
183	Effect of strain rate on the mechanical response of a Ti3Al-Nb-Mo alloy. Metals and Materials International, 1996, 2, 31-36.	0.2	2
184	Effect of fabrication method on the aging behavior of 6061 Al matrix composites reinforced with SiC whiskers. Metals and Materials International, 1997, 3, 33-39.	0.2	2
185	Local Mineral and Matrix Changes Associated with Bone Adaptation and Microdamage. Materials Research Society Symposia Proceedings, 2005, 898, 1.	0.1	2
186	Biomimetic Deposition of Apatite on Zr-1Nb and Ti-6Al-4V. Materials Science Forum, 2007, 534-536, 1013-1016.	0.3	2
187	Microstructure and Mechanical Propertiesof Ti/Cu-Cr/S20C and Ti/Cu-Ag/S20C Clad Composites. Applied Mechanics and Materials, 0, 376, 153-157.	0.2	2
188	Creep performance of Zr-1Nb-0.75Sn-0.1Fe cladding tubes with optimized Sn content. Physics of Metals and Metallography, 2014, 115, 1313-1317.	1.0	2
189	Mechanical Properties of Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite Plate Processed by Explosive Bonding and Cold Rolling. Advanced Materials Research, 2014, 951, 83-86.	0.3	2
190	Effect of Heat Treatment on Galvanic Corrosion of Cu/Al/Cu Clad Soaked in 3.5% NaCl Brine Solution. Advanced Materials Research, 2015, 1102, 55-58.	0.3	2
191	Facile and novel synthetic method to prepare nano molybdenum and its catalytic activity. IET Nanobiotechnology, 2015, 9, 201-208.	3.8	2
192	Effect of roll-bonding temperature on the strength and electrical conductivity of an α-brass-clad Cu–1Cr alloy composite. Physics of Metals and Metallography, 2017, 118, 190-197.	1.0	2
193	Creep Behaviors of CrMnFeCoNi High Entropy Alloy at Intermediate Temperatures. Key Engineering Materials, 2017, 737, 21-26.	0.4	2
194	Stress-Strain Curves and Crack Formation in an Ingot of Stainless Steel 21-4N Under High-Temperature Compression. Metal Science and Heat Treatment, 2017, 59, 24-29.	0.6	2
195	Iron doped vanadium sulfide anemone like nanorod structure for electrochemical water oxidation. Current Applied Physics, 2021, 21, 192-198.	2.4	2
196	Effect of High Temperature Oxidation on the Mechanical Properties of Zr-1Nb-1Sn-0.1Fe Alloy Cladding Tubes. Journal of Korean Institute of Metals and Materials, 2013, 51, 015-024.	1.0	2
197	Experimental and numerical analyses of indentation in single piece and split type specimens. Journal of Materials Science, 2002, 37, 29-34.	3.7	1
198	Creep Behaviors of Stress-Relieved and Annealed Zr-1Nb-0.7Sn-0.1Fe Nuclear Cladding Tubes at Intermediate Temperatures. Applied Mechanics and Materials, 0, 248, 343-348.	0.2	1

#	Article	IF	CITATIONS
199	Mechanical Performance of Ti/Cu-8Ag/S20C Clad Composite Processed by High Pressure Torsioning (HPT). Advanced Materials Research, 0, 625, 323-327.	0.3	1
200	High Pressure Torsioning of Cu-9Fe-1.2X(X = Co, Ni, Ag) Microcomposites and their Microstructural and Mechanical Evolution. Advanced Materials Research, 2013, 813, 87-90.	0.3	1
201	Effect of Scrap: Sponge Ratio on Mechanical and Corrosion Properties of Zr-1Nb-0.7Sn-0.1Fe Alloy. Advanced Materials Research, 0, 977, 94-98.	0.3	1
202	Effect of Heat Treatment on the Mechanical Properties and Interface Structure of 3-ply Ti/Cu/Ti Clad Composite. Advanced Materials Research, 0, 1102, 51-54.	0.3	1
203	Effect of final heat treatment on creep behaviors of Zr-Nb-Cu alloy cladding tubes. Metals and Materials International, 2016, 22, 216-221.	3.4	1
204	Microstructure and Mechanical Properties of Equiatomic CrMnCoNiCu High Entropy Alloy. Materials Science Forum, 2017, 909, 39-43.	0.3	1
205	Bending Behavior and Electrical Conductivity of Cu/Ni/Al/Ni/Cu Clad Composite. Materials Science Forum, 0, 909, 127-132.	0.3	1
206	Stress-Strain Responses of Multi-Phase CoCrCuMnNi and CoCrMnFeCu Alloys. Key Engineering Materials, 0, 765, 166-172.	0.4	1
207	OUT-OF-PILE MECHANICAL PERFORMANCE AND MICROSTRUCTURE OF RECRYSTALLIZED ZR-1.5 NB-O-S ALLOYS. Nuclear Engineering and Technology, 2011, 43, 421-428.	2.3	1
208	Effect of Scrap Impurities on Microstructure and Mechanical Properties of Zr Alloys. Journal of the Korea Foundry Society, 2016, 36, 81-87.	0.2	1
209	Influence of dynamic solute-dislocation interaction on high temperature ductility of Al-Mg alloys. Metals and Materials International, 2000, 6, 103-109.	0.2	Ο
210	Superplastic Behavior and Activation Energies for Plastic Flow in Cu–Ag Mocrocomposites. Advanced Engineering Materials, 2001, 3, 909.	3.5	0
211	Superplastic Behavior of Deformation Processed Cu-Ag Nanocomposites. , 2005, , 728-733.		Ο
212	DEFORMATION BEHAVIORS OF THERMO-MECHANICALLY PROCESSED Zr-Nb-P ALLOYS. International Journal of Modern Physics B, 2009, 23, 1816-1821.	2.0	0
213	Mechanical and electrical properties of Cu-Ag nanocomposites processed by equal channel angular pressing (ECAP). , 2010, , .		0
214	Effect of collagen treatment on the biocompatibility of β-Ti-14Mo-3Nb-3Al-0.2Si alloy. , 2010, , .		0
215	Mechanical Properties of Oxidized Zr-1Nb-0.7Sn-0.1Fe Alloy Nuclear Cladding Tubes at High Temperatures. Advanced Materials Research, 0, 557-559, 1157-1160.	0.3	0
216	Mechanical Properties and Microstructure of Two- Layered Cu-Ni-Zn/Cu-Cr Material Joined by Diffusion Bonding. Advanced Materials Research, 2012, 557-559, 423-426.	0.3	0

#	Article	IF	CITATIONS
217	Mechanical and Microstructural Analyses of Three Layered Cu-Ni-Zn/Cu-Zr/Cu-Ni-Zn Clad Material Processed by High Pressure Torsioning (HPT). Advanced Materials Research, 0, 557-559, 1161-1165.	0.3	0
218	Effect of Heat Treatment on the Bending Behavior of STS/Al/STS Hybrid Metal Plates. Advanced Materials Research, 2013, 813, 34-38.	0.3	0
219	Mechanical Behavior of 3-ply Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite Plate Processed by Roll Bonding. Advanced Materials Research, 0, 813, 43-46.	0.3	Ο
220	Mechanical Properties and Microstructure of Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Clad Plate Processed by High Pressure Torsioning (HPT). Advanced Materials Research, 0, 683, 318-321.	0.3	0
221	Interface Bonding and its Effect on the Mechanical Properties in Roll-Bonded Cu/Al/Cu Hybrid Alloy. Applied Mechanics and Materials, 2014, 508, 56-60.	0.2	Ο
222	Microstructure and Deformability of Cast Zr-Nb-Fe-O Alloy with High Iron and Oxygen Content. Advanced Materials Research, 0, 977, 99-103.	0.3	0
223	Effect of Heat Treatment on the Creep Properties of Zr-1Nb-0.12O Nuclear Cladding Tubes. Advanced Materials Research, 0, 1102, 3-6.	0.3	Ο
224	Mechanical Performance and Ductility of Cu/Al/Cu Clad Metals. Advanced Materials Research, 0, 1102, 7-10.	0.3	0
225	Baddeleyite Type Monoclinic Zirconium Oxide Nanocrystals Formation. Advanced Materials Research, 0, 1102, 79-82.	0.3	0
226	Residual Stress/Strain Effect on the Bending Properties of the Cu/Al/Cu Clad Plate. Key Engineering Materials, 2017, 737, 214-219.	0.4	0
227	Microstructural Evolution and Mechanical Properties of Non-Equiatomic (CoNi)74.66Cr17Fe8C0.34 High-Entropy Alloy. Materials, 2022, 15, 1312.	2.9	0