
Austin Burt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/70352/publications.pdf Version: 2024-02-01

Διιςτιν Βιίρτ

#	Article	IF	CITATIONS
1	Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 2001, 1, 101-102.	1.7	1,073
2	A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016, 34, 78-83.	9.4	985
3	A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology, 2018, 36, 1062-1066.	9.4	648
4	Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 921-928.	1.2	567
5	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	6.0	492
6	The Evolutionary Biology and Population Genetics Underlying Fungal Strain Typing. Clinical Microbiology Reviews, 1999, 12, 126-146.	5.7	320
7	A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature, 2011, 473, 212-215.	13.7	303
8	A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nature Communications, 2014, 5, 3977.	5.8	258
9	PERSPECTIVE: SEX, RECOMBINATION, AND THE EFFICACY OF SELECTION?WAS WEISMANN RIGHT?. Evolution; International Journal of Organic Evolution, 2000, 54, 337-351.	1.1	256
10	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
11	The Population Genetics of Using Homing Endonuclease Genes in Vector and Pest Management. Genetics, 2008, 179, 2013-2026.	1.2	236
12	Mammalian chiasma frequencies as a test of two theories of recombination. Nature, 1987, 326, 803-805.	13.7	213
13	Requirements for effective malaria control with homing endonuclease genes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E874-80.	3.3	189
14	Heritable strategies for controlling insect vectors of disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130432.	1.8	184
15	Homing endonuclease genes: the rise and fall and rise again of a selfish element. Current Opinion in Genetics and Development, 2004, 14, 609-615.	1.5	169
16	Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E255-E264.	3.3	158
17	A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nature Biotechnology, 2020, 38, 1054-1060.	9.4	153
18	Transmissible Dog Cancer Genome Reveals the Origin and History of an Ancient Cell Lineage. Science, 2014, 343, 437-440.	6.0	144

AUSTIN BURT

#	Article	IF	CITATIONS
19	Population Genetics of the Wild Yeast Saccharomyces paradoxus. Genetics, 2004, 166, 43-52.	1.2	143
20	Sex differences in recombination. Journal of Evolutionary Biology, 1991, 4, 259-277.	0.8	135
21	ORIGINS AND EVOLUTION OF A TRANSMISSIBLE CANCER. Evolution; International Journal of Organic Evolution, 2009, 63, 2340-2349.	1.1	113
22	The Comparative Biology of Parasite Species Diversity: Internal Helminths of Freshwater Fish. Journal of Animal Ecology, 1991, 60, 1047.	1.3	107
23	Mitochondrial Capture by a Transmissible Cancer. Science, 2011, 331, 303-303.	6.0	105
24	Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biology, 2019, 17, 26.	1.7	94
25	Adaptation for Horizontal Transfer in a Homing Endonuclease. Molecular Biology and Evolution, 2002, 19, 239-246.	3.5	91
26	The tempo of reproduction in Hyphessobrycon pulchripinnis(Characidae), with a discussion on the biology of â€~multiple spawning' in fishes. Journal of Applied Phycology, 1988, 22, 15-27.	1.5	89
27	Modelling the spatial spread of a homing endonuclease gene in a mosquito population. Journal of Applied Ecology, 2013, 50, 1216-1225.	1.9	88
28	The spatial scale of genetic differentiation in a model organism: the wild yeast Saccharomyces paradoxus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1941-1946.	1.8	81
29	The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies. BMC Molecular Biology, 2009, 10, 65.	3.0	80
30	Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genetics, 2021, 17, e1009321.	1.5	72
31	Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. BMC Biology, 2020, 18, 98.	1.7	70
32	Gene Drive: Evolved and Synthetic. ACS Chemical Biology, 2018, 13, 343-346.	1.6	68
33	Gene drive through a landscape: Reaction–diffusion models of population suppression and elimination by a sex ratio distorter. Theoretical Population Biology, 2016, 108, 51-69.	0.5	67
34	How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biology, 2017, 15, 81.	1.7	66
35	Genetic conflicts in genomic imprinting. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2393-2397.	1.2	65
36	Requirements for Driving Antipathogen Effector Genes into Populations of Disease Vectors by Homing. Genetics, 2017, 205, 1587-1596.	1.2	62

AUSTIN BURT

#	Article	IF	CITATIONS
37	Self-limiting population genetic control with sex-linked genome editors. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180776.	1.2	52
38	Gene drive to reduce malaria transmission in sub-Saharan Africa. Journal of Responsible Innovation, 2018, 5, S66-S80.	2.3	49
39	Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species. Nucleic Acids Research, 2004, 32, 3947-3956.	6.5	40
40	Gene drive for population genetic control: non-functional resistance and parental effects. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191586.	1.2	39
41	Vector control with driving Y chromosomes: modelling the evolution of resistance. Malaria Journal, 2017, 16, 286.	0.8	38
42	Degeneration and Domestication of a Selfish Gene in Yeast: Molecular Evolution Versus Site-Directed Mutagenesis. Molecular Biology and Evolution, 2005, 22, 1535-1538.	3.5	37
43	Outcrossed sex allows a selfish gene to invade yeast populations. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2537-2542.	1.2	32
44	The mutational structure of metabolism in <i>Caenorhabditis elegans</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 2239-2246.	1.1	30
45	Estimating Effective Population Size from Temporally Spaced Samples with a Novel, Efficient Maximum-Likelihood Algorithm. Genetics, 2015, 200, 285-293.	1.2	27
46	Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Malaria Journal, 2021, 20, 170.	0.8	26
47	Double drives and private alleles for localised population genetic control. PLoS Genetics, 2021, 17, e1009333.	1.5	24
48	The use of driving endonuclease genes to suppress mosquito vectors of malaria in temporally variable environments. Malaria Journal, 2018, 17, 154.	0.8	22
49	Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation. PLoS Genetics, 2021, 17, e1009740.	1.5	21
50	Seed Reproduction Is Associated with a Transient Escape from Parasite Damage in American Beech. Oikos, 1991, 61, 145.	1.2	20
51	Metabolic variation in natural populations of wild yeast. Ecology and Evolution, 2015, 5, 722-732.	0.8	16
52	Red Queen versus Tangled Bank models. Nature, 1987, 330, 118-118.	13.7	15
53	Genomic signatures of population decline in the malaria mosquito Anopheles gambiae. Malaria Journal, 2016, 15, 182.	0.8	14
54	Robust Estimation of Recent Effective Population Size from Number of Independent Origins in Soft Sweeps. Molecular Biology and Evolution, 2019, 36, 2040-2052.	3.5	13

AUSTIN BURT

#	Article	IF	CITATIONS
55	Tests of sib diversification theories of outcrossing in Impatiens capensis: Effects of inbreeding and neighbour relatedness on production and infestation. Journal of Evolutionary Biology, 1992, 5, 575-588.	0.8	12
56	Estimating the fitness effects of new mutations in the wild yeast Saccharomyces paradoxus. Genome Biology and Evolution, 2015, 7, 1887-95.	1.1	12
57	Estimating linkage disequilibrium from genotypes under Hardy-Weinberg equilibrium. BMC Genetics, 2020, 21, 21.	2.7	11
58	80 questions for UK biological security. PLoS ONE, 2021, 16, e0241190.	1.1	8
59	Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density. Theoretical Population Biology, 2022, 145, 109-125.	0.5	8
60	Sources of variance in protein heterozygosity: the importance of the species-protein interaction. Heredity, 1992, 68, 241-252.	1.2	7
61	Population Size, Sex and Purifying Selection: Comparative Genomics of Two Sister Taxa of the Wild Yeast Saccharomyces paradoxus. Genome Biology and Evolution, 2020, 12, 1636-1645.	1.1	7
62	Ultra-conserved sequences in the genomes of highly diverse <i>Anopheles</i> mosquitoes, with implications for malaria vector control. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
63	Identifying the time scale of temporal association. Canadian Journal of Zoology, 1988, 66, 2090-2092.	0.4	2
64	Partitioning the contributions of alternative malaria vector species. Malaria Journal, 2016, 15, 60.	0.8	2
65	Editorial: gene drive for vector control. Pathogens and Global Health, 2017, 111, 397-398.	1.0	0
66	Contemporary N e estimation using temporally spaced data with linked loci. Molecular Ecology Resources, 2021, 21, 2221-2230.	2.2	0