Lise Bjørkhaug Gundersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034932/publications.pdf

Version: 2024-02-01

37 papers

10,988 citations

20 h-index

361045

35 g-index

40 all docs

40 docs citations

40 times ranked

30635 citing authors

#	Article	IF	CITATIONS
1	Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants. Journal of Biological Chemistry, 2022, 298, 101803.	1.6	4
2	The Female Menstrual Cycles Effect on Strength and Power Parameters in High-Level Female Team Athletes. Frontiers in Physiology, 2021, 12, 600668.	1.3	13
3	Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation. American Journal of Human Genetics, 2020, 107, 670-682.	2.6	25
4	Functional Analyses of HNF1A-MODY Variants Refine the Interpretation of Identified Sequence Variants. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1377-e1386.	1.8	14
5	<p>Incidence of HNF1A and GCK MODY Variants in a South African Population</p> . The Application of Clinical Genetics, 2020, Volume 13, 209-219.	1.4	4
6	A novel SRC-2-dependent regulation of epithelial-mesenchymal transition in breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 57-70.	1.2	5
7	E-LEARNING FACILITATES FLIPPED LEARNING AND PORTFOLIO ASSESSMENT IN BIOMEDICAL LABORATORY SCIENCE. INTED Proceedings, 2019, , .	0.0	O
8	The E3 SUMO ligase PIASγ is a novel interaction partner regulating the activity of diabetes associated hepatocyte nuclear factor-1α. Scientific Reports, 2018, 8, 12780.	1.6	14
9	<i>In vitro</i> characterization of six <i>STUB1</i> variants in spinocerebellar ataxia 16 reveals altered structural properties for the encoded CHIP proteins. Bioscience Reports, 2017, 37, .	1.1	27
10	Functional Investigations of <i>HNF1A</i> Identify Rare Variants as Risk Factors for Type 2 Diabetes in the General Population. Diabetes, 2017, 66, 335-346.	0.3	54
11	The HNF1A mutant Ala180Val: Clinical challenges in determining causality of a rare HNF1A variant in familial diabetes. Diabetes Research and Clinical Practice, 2017, 133, 142-149.	1.1	6
12	Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation. Molecular and Cellular Endocrinology, 2017, 454, 146-157.	1.6	5
13	Structure–function studies of <i><scp>HNF1A</scp></i> (<scp>MODY3</scp>) gene mutations in South Indian patients with monogenic diabetes. Clinical Genetics, 2016, 90, 486-495.	1.0	32
14	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	13.7	9,051
15	The cAMP-dependent protein kinase downregulates glucose-6-phosphatase expression through RORα and SRC-2 coactivator transcriptional activity. Molecular and Cellular Endocrinology, 2016, 419, 92-101.	1.6	8
16	High Incidence of Heterozygous <i>ABCC8</i> and <i>HNF1A</i> Mutations in Czech Patients With Congenital Hyperinsulinism. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1540-E1549.	1.8	32
17	STUB1 mutations in autosomal recessive ataxias – evidence for mutation-specific clinical heterogeneity. Orphanet Journal of Rare Diseases, 2014, 9, 146.	1.2	63
18	Association of a Low-Frequency Variant in <i>HNF1A</i> With Type 2 Diabetes in a Latino Population. JAMA - Journal of the American Medical Association, 2014, 311, 2305.	3.8	230

#	Article	IF	CITATIONS
19	GCK-MODY diabetes as a protein misfolding disease: The mutation R275C promotes protein misfolding, self-association and cellular degradation. Molecular and Cellular Endocrinology, 2014, 382, 55-65.	1.6	15
20	SUMOylation of Pancreatic Glucokinase Regulates Its Cellular Stability and Activity*. Journal of Biological Chemistry, 2013, 288, 5951-5962.	1.6	30
21	Monogenic diabetes mellitus in Norway. Norsk Epidemiologi, 2013, 23, .	0.2	3
22	GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1705-1715.	1.8	14
23	Binding of ATP at the active site of human pancreatic glucokinase $\hat{s} \in \hat{s}$ finucleotide $\hat{s} \in \hat{s}$ induced conformational changes with possible implications for its kinetic cooperativity. FEBS Journal, 2011, 278, 2372-2386.	2.2	19
24	Diabetes and Pancreatic Exocrine Dysfunction Due to Mutations in the Carboxyl Ester Lipase Gene-Maturity Onset Diabetes of the Young (CEL-MODY). Journal of Biological Chemistry, 2011, 286, 34593-34605.	1.6	80
25	Catalytic activation of human glucokinase by substrate bindingâ€∫–â€∫residue contacts involved in the binding of <scp>O</scp> â€glucose to the superâ€open form and conformational transitions. FEBS Journal, 2008, 275, 2467-2481.	2.2	36
26	Diagnostic screening of MODY2/ <i>GCK</i> mutations in the Norwegian MODY Registry. Pediatric Diabetes, 2008, 9, 442-449.	1.2	49
27	Allosteric Activation of Human Glucokinase by Free Polyubiquitin Chains and Its Ubiquitin-dependent Cotranslational Proteasomal Degradation. Journal of Biological Chemistry, 2007, 282, 22757-22764.	1.6	32
28	Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nature Genetics, 2006, 38, 54-62.	9.4	296
29	From Clinicogenetic Studies of Maturity-Onset Diabetes of the Young to Unraveling Complex Mechanisms of Glucokinase Regulation. Diabetes, 2006, 55, 1713-1722.	0.3	72
30	A Hepatocyte Nuclear Factor-4Â Gene (HNF4A) P2 Promoter Haplotype Linked With Late-Onset Diabetes: Studies of HNF4A Variants in the Norwegian MODY Registry. Diabetes, 2006, 55, 1899-1903.	0.3	33
31	Functional Dissection of the HNF-1alpha Transcription Factor: A Study on Nuclear Localization and Transcriptional Activation. DNA and Cell Biology, 2005, 24, 661-669.	0.9	25
32	Hepatocyte Nuclear Factor- $\hat{1}$ ± Gene Mutations and Diabetes in Norway. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 920-931.	1.8	82
33	Permanent Neonatal Diabetes Caused by Glucokinase Deficiency: Inborn Error of the Glucose-Insulin Signaling Pathway. Diabetes, 2003, 52, 2854-2860.	0.3	173
34	Neonatal Diabetes Mellitus Due to Complete Glucokinase Deficiency. New England Journal of Medicine, 2001, 344, 1588-1592.	13.9	386
35	MODY Associated with Two Novel Hepatocyte Nuclear Factor-1α Loss-of-Function Mutations (P112L and) Tj ETQc	1 1 0.784 1.0	314 rgBT /C
36	A new candidate region for the positional cloning of the XLP gene. European Journal of Human Genetics, 1998, 6, 509-517.	1.4	11

#	‡	Article	IF	CITATIONS
3	37	The interaction between human FCγRI and the γ-chain is mediated solely via the 21 amino acid transmembrane domain of FCγRI. Molecular Membrane Biology, 1995, 12, 309-312.	2.0	16