
Maria Cristina Rulli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Socio-environmental impacts of diamond mining areas in the Democratic Republic of Congo. Science of the Total Environment, 2022, 810, 152037.	8.0	4
2	Competition for water induced by transnational land acquisitions for agriculture. Nature Communications, 2022, 13, 505.	12.8	24
3	The value generated by irrigation in the command areas of new agricultural dams in Africa. Agricultural Water Management, 2022, 264, 107517.	5.6	5
4	Low Adherence to the EAT-Lancet Sustainable Reference Diet in the Brazilian Population: Findings from the National Dietary Survey 2017–2018. Nutrients, 2022, 14, 1187.	4.1	23
5	Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	7
6	Global assessment of land and water resource demand for pork supply. Environmental Research Letters, 2022, 17, 074003.	5.2	10
7	Hydrological implications of large-scale afforestation in tropical biomes for climate change mitigation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	12
8	Largeâ€scale land acquisition as a potential driver of slope instability. Land Degradation and Development, 2021, 32, 1773-1785.	3.9	6
9	Impact of transnational land acquisitions on local food security and dietary diversity. Proceedings of the United States of America, 2021, 118, .	7.1	51
10	Energy implications of the 21st century agrarian transition. Nature Communications, 2021, 12, 2319.	12.8	28
11	Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food, 2021, 2, 409-416.	14.0	59
12	A new dataset of global irrigation areas from 2001 to 2015. Advances in Water Resources, 2021, 152, 103910.	3.8	27
13	Water resources constraints in achieving silk production self-sufficiency in India. Advances in Water Resources, 2021, 154, 103962.	3.8	1
14	Global assessment of natural resources for chicken production. Advances in Water Resources, 2021, 154, 103987.	3.8	19
15	Values-Based Scenarios of Water Security: Rights to Water, Rights of Waters, and Commercial Water Rights. BioScience, 2021, 71, 1157-1170.	4.9	7
16	Prompting sustainability in the citrus derivates industry: A case study. Cleaner Engineering and Technology, 2021, 4, 100127.	4.0	1
17	The global value of water in agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21985-21993.	7.1	112
18	The green and blue crop water requirement WATNEEDS model and its global gridded outputs. Scientific Data, 2020, 7, 273.	5.3	45

#	Article	IF	CITATIONS
19	Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29526-29534.	7.1	106
20	Global agricultural economic water scarcity. Science Advances, 2020, 6, eaaz6031.	10.3	334
21	Tropical forest loss enhanced by large-scale land acquisitions. Nature Geoscience, 2020, 13, 482-488.	12.9	87
22	Hydrological consequences of natural rubber plantations in Southeast Asia. Land Degradation and Development, 2020, 31, 2060-2073.	3.9	21
23	Future Scenarios of Soil Erosion in the Alps under Climate Change and Land Cover Transformations Simulated with Automatic Machine Learning. Climate, 2020, 8, 28.	2.8	20
24	Global water grabbing and food insecurity. , 2020, , 113-128.		1
25	Global unsustainable virtual water flows in agricultural trade. Environmental Research Letters, 2019, 14, 114001.	5.2	108
26	D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps. European Journal of Remote Sensing, 2019, 52, 34-53.	3.5	29
27	Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renewable and Sustainable Energy Reviews, 2019, 105, 499-512.	16.4	92
28	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	23.0	446
29	The Waterâ€Energy Nexus of Hydraulic Fracturing: A Global Hydrologic Analysis for Shale Oil and Gas Extraction. Earth's Future, 2018, 6, 745-756.	6.3	61
30	Socio-Environmental Effects of Large-Scale Land Acquisition in Mozambique. Research for Development, 2018, , 377-389.	0.4	44
31	The Global Water Grabbing Syndrome. Ecological Economics, 2018, 143, 276-285.	5.7	134
32	Coupling the water footprint accounting of crops and in-stream monitoring activities at the catchment scale. MethodsX, 2018, 5, 1221-1240.	1.6	6
33	The neglected costs of water peace. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1316.	6.5	11
34	Closing the yield gap while ensuring water sustainability. Environmental Research Letters, 2018, 13, 104002.	5.2	127
35	Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities. Journal of Cleaner Production, 2018, 200, 454-470.	9.3	45
36	Alternative cereals can improve water use and nutrient supply in India. Science Advances, 2018, 4, eaao1108.	10.3	87

MARIA CRISTINA RULLI

#	Article	IF	CITATIONS
37	The water-land-food nexus of natural rubber production. Journal of Cleaner Production, 2018, 172, 1739-1747.	9.3	40
38	Satellite-based cover management factor assessment for soil water erosion in the Alps. , 2018, , .		1
39	Resilience in the global food system. Environmental Research Letters, 2017, 12, 025010.	5.2	100
40	The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Scientific Reports, 2017, 7, 41613.	3.3	145
41	New frontiers of land and water commodification: socioâ€environmental controversies of largeâ€scale land acquisitions. Land Degradation and Development, 2017, 28, 2234-2244.	3.9	52
42	The Tragedy of the Grabbed Commons: Coercion and Dispossession in the Global Land Rush. World Development, 2017, 92, 1-12.	4.9	216
43	Water limits to closing yield gaps. Advances in Water Resources, 2017, 99, 67-75.	3.8	58
44	Threats to sustainable development posed by land and water grabbing. Current Opinion in Environmental Sustainability, 2017, 26-27, 120-128.	6.3	111
45	European large-scale farmland investments and the land-water-energy-food nexus. Advances in Water Resources, 2017, 110, 579-590.	3.8	40
46	Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 2017, 10, 919-924.	12.9	238
47	Water Savings of Crop Redistribution in the United States. Water (Switzerland), 2017, 9, 83.	2.7	35
48	The water-land-food nexus of first-generation biofuels. Scientific Reports, 2016, 6, 22521.	3.3	226
49	Reserves and trade jointly determine exposure to food supply shocks. Environmental Research Letters, 2016, 11, 095009.	5.2	88
50	Climate change and large-scale land acquisitions in Africa: Quantifying the future impact on acquired water resources. Advances in Water Resources, 2016, 94, 231-237.	3.8	21
51	Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam. Earth Surface Processes and Landforms, 2016, 41, 2024-2037.	2.5	42
52	The global land rush and climate change. Earth's Future, 2015, 3, 298-311.	6.3	37
53	Global investments in agricultural land and the role of the EU: Drivers, scope and potential impacts. Land Use Policy, 2015, 47, 98-111.	5.6	43
54	Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nature Geoscience, 2015, 8, 772-775.	12.9	164

MARIA CRISTINA RULLI

#	Article	IF	CITATIONS
55	Land grabbing: a preliminary quantification of economic impacts on rural livelihoods. Population and Environment, 2014, 36, 180-192.	3.0	120
56	Food appropriation through large scale land acquisitions. Environmental Research Letters, 2014, 9, 064030.	5.2	58
57	Moderating diets to feed the future. Earth's Future, 2014, 2, 559-565.	6.3	59
58	The science of evidence: the value of global studies on land rush. Journal of Peasant Studies, 2013, 40, 907-909.	4.5	13
59	The water footprint of land grabbing. Geophysical Research Letters, 2013, 40, 6130-6135.	4.0	51
60	Global land and water grabbing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 892-897.	7.1	480
61	The fourth food revolution. Nature Geoscience, 2013, 6, 417-418.	12.9	44
62	A physically based model for the hydrologic control on shallow landsliding. Water Resources Research, 2006, 42, .	4.2	132
63	A non-conventional watershed partitioning method for semi-distributed hydrological modelling: the package ALADHYN. Hydrological Processes, 2002, 16, 277-291.	2.6	14
64	A growing produce bubble: United States produce tied to Mexico's unsustainable agricultural water use. Environmental Research Letters, 0, , .	5.2	8