Nicholas M Provine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034334/publications.pdf

Version: 2024-02-01

471509 1,544 34 17 citations h-index papers

32 g-index 38 38 38 3363 docs citations times ranked citing authors all docs

414414

#	Article	IF	CITATIONS
1	Adenovirus vectors activate Vδ2 ⁺ γÎT cells in a type I interferonâ€, TNFâ€, and ILâ€18â€dependent manner. European Journal of Immunology, 2022, 52, 835-837.	2.9	3
2	CMV-associated T cell and NK cell terminal differentiation does not affect immunogenicity of ChAdOx1 vaccination. JCl Insight, 2022, 7, .	5.0	6
3	Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCl Insight, 2022, 7, .	5.0	24
4	T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nature Medicine, 2021, 27, 270-278.	30.7	473
5	Human intestinal tissue-resident memory TÂcells comprise transcriptionally and functionally distinct subsets. Cell Reports, 2021, 34, 108661.	6.4	56
6	MAIT cell activation augments adenovirus vector vaccine immunogenicity. Science, 2021, 371, 521-526.	12.6	88
7	O43â€The phenotype and TCR repertoire of intestinal CD8+ T cells is altered in coeliac disease. , 2021, , .		0
8	Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8+ T cells. Nature Immunology, 2021, 22, 1042-1051.	14.5	30
9	Identification of immune correlates of fatal outcomes in critically ill COVID-19 patients. PLoS Pathogens, 2021, 17, e1009804.	4.7	39
10	Treatment of COVID-19 with remdesivir in the absence of humoral immunity: a case report. Nature Communications, 2020, 11, 6385.	12.8	103
11	MAIT Cells in Health and Disease. Annual Review of Immunology, 2020, 38, 203-228.	21.8	152
12	Human MAIT Cell Activation In Vitro. Methods in Molecular Biology, 2020, 2098, 97-124.	0.9	10
13	Immunogenicity and Cross-Reactivity of Rhesus Adenoviral Vectors. Journal of Virology, 2018, 92, .	3.4	7
14	Memory inflation following adenoviral vaccination depends on IL-21. Vaccine, 2018, 36, 7011-7016.	3.8	4
15	Combined HDAC and BET Inhibition Enhances Melanoma Vaccine Immunogenicity and Efficacy. Journal of Immunology, 2018, 201, 2744-2752.	0.8	11
16	Unique and Common Features of Innate-Like Human Vδ2+ γÎT Cells and Mucosal-Associated Invariant T Cells. Frontiers in Immunology, 2018, 9, 756.	4.8	55
17	Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Frontiers in Immunology, 2018, 9, 1478.	4.8	64
18	Development of novel replication-defective lymphocytic choriomeningitis virus vectors expressing SIV antigens. Vaccine, 2017, 35, 1-9.	3.8	14

#	Article	IF	CITATIONS
19	Novel Concepts for HIV Vaccine Vector Design. MSphere, 2017, 2, .	2.9	11
20	Combined HDAC and BET inhibition to enhance cancer vaccine-elicited T-cell responses Journal of Clinical Oncology, 2017, 35, e14632-e14632.	1.6	0
21	Transient CD4 ⁺ T Cell Depletion Results in Delayed Development of Functional Vaccine-Elicited Antibody Responses. Journal of Virology, 2016, 90, 4278-4288.	3.4	13
22	Inhibitory receptor expression on memory CD8 T cells following Ad vector immunization. Vaccine, 2016, 34, 4955-4963.	3.8	22
23	Immediate Dysfunction of Vaccine-Elicited CD8+ T Cells Primed in the Absence of CD4+ T Cells. Journal of Immunology, 2016, 197, 1809-1822.	0.8	41
24	Adenovirus serotype 5 vaccine vectors trigger IL-27–dependent inhibitory CD4 ⁺ T cell responses that impair CD8 ⁺ T cell function. Science Immunology, 2016, 1, .	11.9	16
25	Vaccine-elicited CD4 T cells induce immunopathology after chronic LCMV infection. Science, 2015, 347, 278-282.	12.6	71
26	CD4 T Cell Depletion Substantially Augments the Rescue Potential of PD-L1 Blockade for Deeply Exhausted CD8 T Cells. Journal of Immunology, 2015, 195, 1054-1063.	0.8	34
27	Hexon Hypervariable Region-Modified Adenovirus Type 5 (Ad5) Vectors Display Reduced Hepatotoxicity but Induce T Lymphocyte Phenotypes Similar to Ad5 Vectors. Vaccine Journal, 2014, 21, 1137-1144.	3.1	12
28	Longitudinal Requirement for CD4+ T Cell Help for Adenovirus Vector–Elicited CD8+ T Cell Responses. Journal of Immunology, 2014, 192, 5214-5225.	0.8	25
29	Augmented Replicative Capacity of the Boosting Antigen Improves the Protective Efficacy of Heterologous Prime-Boost Vaccine Regimens. Journal of Virology, 2014, 88, 6243-6254.	3.4	10
30	Alternative Serotype Adenovirus Vaccine Vectors Elicit Memory T Cells with Enhanced Anamnestic Capacity Compared to Ad5 Vectors. Journal of Virology, 2013, 87, 1373-1384.	3.4	74
31	An Attenuated Listeria monocytogenes Vector Primes More Potent Simian Immunodeficiency Virus-Specific Mucosal Immunity than DNA Vaccines in Mice. Journal of Virology, 2013, 87, 4751-4755.	3.4	9
32	The neutralization sensitivity of viruses representing human immunodeficiency virus type 1 variants of diverse subtypes from early in infection is dependent on producer cell, as well as characteristics of the specific antibody and envelope variant. Virology, 2012, 427, 25-33.	2.4	25
33	The Infectious Molecular Clone and Pseudotyped Virus Models of Human Immunodeficiency Virus Type 1 Exhibit Significant Differences in Virion Composition with Only Moderate Differences in Infectivity and Inhibition Sensitivity. Journal of Virology, 2009, 83, 9002-9007.	3.4	29
34	Evaluation of perturbed iron-homeostasis in a prospective cohort of patients with COVID-19. Wellcome Open Research, 0, 7, 173.	1.8	4