Michael Howe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Landscape predictions of western balsam bark beetle activity implicate warm temperatures, a longer growing season, and drought in widespread irruptions across British Columbia. Forest Ecology and Management, 2022, 508, 120047.	3.2	7
2	Numbers matter: how irruptive bark beetles initiate transition to self-sustaining behavior during landscape-altering outbreaks. Oecologia, 2022, 198, 681-698.	2.0	9
3	Growth and defense characteristics of whitebark pine (Pinus albicaulis) and lodgepole pine (Pinus) Tj ETQq1 1 0.7 Montana, USA. Forest Ecology and Management, 2021, 493, 119286.	784314 rg 3.2	BT /Overlock 5
4	Climateâ€induced outbreaks in highâ€elevation pines are driven primarily by immigration of bark beetles from historical hosts. Global Change Biology, 2021, 27, 5786-5805.	9.5	5
5	Combined drought and bark beetle attacks deplete nonâ€structural carbohydrates and promote death of mature pine trees. Plant, Cell and Environment, 2021, 44, 3866-3881.	5.7	16
6	Relationships between conifer constitutive and inducible defenses against bark beetles change across levels of biological and ecological scale. Oikos, 2020, 129, 1093-1107.	2.7	12
7	Drought-Mediated Changes in Tree Physiological Processes Weaken Tree Defenses to Bark Beetle Attack. Journal of Chemical Ecology, 2019, 45, 888-900.	1.8	67
8	Anatomical defences against bark beetles relate to degree of historical exposure between species and are allocated independently of chemical defences within trees. Plant, Cell and Environment, 2019, 42, 633-646.	5.7	27
9	Defence syndromes in lodgepole – whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. Plant, Cell and Environment, 2017, 40, 1791-1806.	5.7	61
10	Spatial and temporal components of induced plant responses in the context of herbivore life history and impact on host. Functional Ecology, 2017, 31, 2034-2050.	3.6	23
11	Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem. Ecological Applications, 2016, 26, 2507-2524.	3.8	66
12	Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi. Journal of Chemical Ecology, 2016, 42, 1-12.	1.8	76
13	Tree response and mountain pine beetle attack preference, reproduction and emergence timing in mixed whitebark and lodgepole pine stands. Agricultural and Forest Entomology, 2015, 17, 421-432.	1.3	59
14	Contrasting Patterns of Diterpene Acid Induction by Red Pine and White Spruce to Simulated Bark Beetle Attack, and Interspecific Differences in Sensitivity Among Fungal Associates. Journal of Chemical Ecology, 2015, 41, 524-532.	1.8	15
15	Bacteria Associated with a Tree-Killing Insect Reduce Concentrations of Plant Defense Compounds. Journal of Chemical Ecology, 2013, 39, 1003-1006.	1.8	227
16	Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2193-2198.	7.1	169
17	Effects of biotic disturbances on forest carbon cycling in the <scp>U</scp> nited <scp>S</scp> tates and <scp>C</scp> anada. Global Change Biology, 2012, 18, 7-34.	9.5	418
18	What explains landscape patterns of tree mortality caused by bark beetle outbreaks in Greater Yellowstone?. Global Ecology and Biogeography, 2012, 21, 556-567.	5.8	69

MICHAEL HOWE

#	Article	IF	CITATIONS
19	Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research, 2011, 41, 1174-1188.	1.7	250
20	The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology and Evolution, 2011, 26, 523-532.	8.7	839
21	Responses of Bark Beetle-Associated Bacteria to Host Monoterpenes and Their Relationship to Insect Life Histories. Journal of Chemical Ecology, 2011, 37, 808-817.	1.8	73
22	Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal patterns and climate. Ecography, 2008, 31, 348-358.	4.5	166
23	Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. BioScience, 2008, 58, 501-517.	4.9	1,410
24	Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography, 2006, 29, 427-441.	4.5	197
25	Interactions Among Conifer Terpenoids and Bark Beetles Across Multiple Levels of Scale: An Attempt to Understand Links Between Population Patterns and Physiological Processes. Recent Advances in Phytochemistry, 2005, 39, 79-118.	0.5	118
26	Effects of Diterpene Acids on Components of a Conifer Bark Beetle–Fungal Interaction: Tolerance by <i>lps pini</i> and Sensitivity by Its Associate <i>Ophiostoma ips</i> . Environmental Entomology, 2005, 34, 486-493.	1.4	71
27	FEEDBACK BETWEEN INDIVIDUAL HOST SELECTION BEHAVIOR AND POPULATION DYNAMICS IN AN ERUPTIVE HERBIVORE. Ecological Monographs, 2004, 74, 101-116.	5.4	125
28	Effect of varying monoterpene concentrations on the response of Ips pini (Coleoptera: Scolytidae) to its aggregation pheromone: implications for pest management and ecology of bark beetles. Agricultural and Forest Entomology, 2003, 5, 269-274.	1.3	95
29	Influences of Host Chemicals and Internal Physiology on the Multiple Steps of Postlanding Host Acceptance Behavior oflps pini(Coleoptera: Scolytidae). Environmental Entomology, 2000, 29, 442-453.	1.4	86
30	Combined chemical defenses against an insect-fungal complex. Journal of Chemical Ecology, 1996, 22, 1367-1388.	1.8	126
31	Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia, 1995, 102, 285-295.	2.0	243
32	Physiological Differences Between Lodgepole Pines Resistant and Susceptible to the Mountain Pine Beetle 1 and Associated Microorganisms 2. Environmental Entomology, 1982, 11, 486-492.	1.4	183