
Theodor Agapie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7033637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	13.7	682
2	A Synthetic Model of the Mn ₃ Ca Subsite of the Oxygen-Evolving Complex in Photosystem II. Science, 2011, 333, 733-736.	6.0	516
3	Molecular enhancement of heterogeneous CO2 reduction. Nature Materials, 2020, 19, 266-276.	13.3	416
4	Selective ethylene oligomerization: Recent advances in chromium catalysis and mechanistic investigations. Coordination Chemistry Reviews, 2011, 255, 861-880.	9.5	337
5	Mechanistic Studies of the Ethylene Trimerization Reaction with Chromiumâ^'Diphosphine Catalysts:Â Experimental Evidence for a Mechanism Involving Metallacyclic Intermediates. Journal of the American Chemical Society, 2004, 126, 1304-1305.	6.6	289
6	Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters. Nature Chemistry, 2013, 5, 293-299.	6.6	289
7	CO ₂ Reduction Selective for C _{≥2} Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Central Science, 2017, 3, 853-859.	5.3	226
8	Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10084-10088.	3.3	179
9	Mechanistic Studies of Olefin and Alkyne Trimerization with Chromium Catalysts:  Deuterium Labeling and Studies of Regiochemistry Using a Model Chromacyclopentane Complex. Journal of the American Chemical Society, 2007, 129, 14281-14295.	6.6	174
10	Bimetallic Coordination Insertion Polymerization of Unprotected Polar Monomers: Copolymerization of Amino Olefins and Ethylene by Dinickel Bisphenoxyiminato Catalysts. Journal of the American Chemical Society, 2013, 135, 3784-3787.	6.6	166
11	Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule, 2021, 5, 706-719.	11.7	158
12	Nickel-Mediated Hydrogenolysis of C–O Bonds of Aryl Ethers: What Is the Source of the Hydrogen?. Journal of the American Chemical Society, 2012, 134, 5480-5483.	6.6	142
13	Synthesis and Câ^C Coupling Reactivity of a Dinuclear Ni ^I â^Ni ^I Complex Supported by a Terphenyl Diphosphine. Journal of the American Chemical Society, 2010, 132, 6296-6297.	6.6	136
14	Synthetic Cluster Models of Biological and Heterogeneous Manganese Catalysts for O ₂ Evolution. Inorganic Chemistry, 2013, 52, 13833-13848.	1.9	134
15	Toward Models for the Full Oxygen-Evolving Complex of Photosystem II by Ligand Coordination To Lower the Symmetry of the Mn ₃ CaO ₄ Cubane: Demonstration That Electronic Effects Facilitate Binding of a Fifth Metal. Journal of the American Chemical Society, 2014, 136, 14373-14376.	6.6	121
16	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Letters, 2020, 5, 2811-2818.	8.8	106
17	Inâ€Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO ₂ Reduction to Ethylene. Angewandte Chemie - International Edition, 2019, 58, 16952-16958.	7.2	103
18	Oxygen Atom Transfer and Oxidative Water Incorporation in Cuboidal Mn ₃ MO _{<i>n</i>} Complexes Based on Synthetic, Isotopic Labeling, and Computational Studies. Journal of the American Chemical Society, 2013, 135, 1073-1082.	6.6	95

#	Article	IF	CITATIONS
19	Molybdenum Catalyzed Ammonia Borane Dehydrogenation: Oxidation State Specific Mechanisms. Journal of the American Chemical Society, 2014, 136, 11272-11275.	6.6	92
20	Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site. Nature, 2016, 529, 72-75.	13.7	92
21	Bimetallic Effects on Ethylene Polymerization in the Presence of Amines: Inhibition of the Deactivation by Lewis Bases. Journal of the American Chemical Society, 2012, 134, 1478-1481.	6.6	87
22	Heterometallic Triiron-Oxo/Hydroxo Clusters: Effect of Redox-Inactive Metals. Journal of the American Chemical Society, 2013, 135, 19075-19078.	6.6	82
23	Zirconium and Titanium Complexes Supported by Tridentate LX ₂ Ligands Having Two Phenolates Linked to Furan, Thiophene, and Pyridine Donors: Precatalysts for Propylene Polymerization and Oligomerization. Organometallics, 2008, 27, 6245-6256.	1.1	79
24	Methine (CH) Transfer via a Chlorine Atom Abstraction/Benzene-Elimination Strategy:Â Molybdenum Methylidyne Synthesis and Elaboration to a Phosphaisocyanide Complex. Journal of the American Chemical Society, 2002, 124, 2412-2413.	6.6	77
25	Nickel Hydrides Supported by a Non-Innocent Diphosphine Arene Pincer: Mechanistic Studies of Nickelâ^'Arene H-Migration and Partial Arene Hydrogenation. Journal of the American Chemical Society, 2011, 133, 3828-3831.	6.6	71
26	Trinucleating Copper: Synthesis and Magnetostructural Characterization of Complexes Supported by a Hexapyridyl 1,3,5â€Triarylbenzene Ligand. Angewandte Chemie - International Edition, 2011, 50, 1668-1672.	7.2	70
27	Investigations of the Effect of the Non-Manganese Metal in Heterometallic-Oxido Cluster Models of the Oxygen Evolving Complex of Photosystem II: Lanthanides as Substitutes for Calcium. Inorganic Chemistry, 2015, 54, 59-64.	1.9	69
28	Dramatic HER Suppression on Ag Electrodes via Molecular Films for Highly Selective CO ₂ to CO Reduction. ACS Catalysis, 2021, 11, 4530-4537.	5.5	61
29	Combination of Redox-Active Ligand and Lewis Acid for Dioxygen Reduction with π-Bound Molybdenumâ^'Quinonoid Complexes. Journal of the American Chemical Society, 2015, 137, 1458-1464.	6.6	60
30	Dipalladium(I) Terphenyl Diphosphine Complexes as Models for Two-Site Adsorption and Activation of Organic Molecules. Journal of the American Chemical Society, 2013, 135, 15830-15840.	6.6	57
31	Lewis Acid Enhancement of Proton Induced CO ₂ Cleavage: Bond Weakening and Ligand Residence Time Effects. Journal of the American Chemical Society, 2018, 140, 10121-10125.	6.6	56
32	Mechanism of Molybdenum-Mediated Carbon Monoxide Deoxygenation and Coupling: Mono- and Dicarbyne Complexes Precede C–O Bond Cleavage and C–C Bond Formation. Journal of the American Chemical Society, 2016, 138, 16466-16477.	6.6	53
33	Trinuclear first row transition metal complexes of a hexapyridyl, trialkoxy 1,3,5-triarylbenzene ligand. Chemical Communications, 2011, 47, 4189.	2.2	52
34	Dinickel Bisphenoxyiminato Complexes for the Polymerization of Ethylene and α-Olefins. Organometallics, 2012, 31, 2231-2243.	1.1	52
35	Tetranuclear Manganese Models of the OEC Displaying Hydrogen Bonding Interactions: Application to Electrocatalytic Water Oxidation to Hydrogen Peroxide. Journal of the American Chemical Society, 2017, 139, 9108-9111.	6.6	49
36	Efficient Copolymerization of Acrylate and Ethylene with Neutral P, O-Chelated Nickel Catalysts: Mechanistic Investigations of Monomer Insertion and Chelate Formation. Journal of the American Chemical Society, 2021, 143, 6516-6527.	6.6	49

#	Article	IF	CITATIONS
37	Reversible Halideâ€Modulated Nickel–Nickel Bond Cleavage: Metal–Metal Bonds as Design Elements for Molecular Devices. Angewandte Chemie - International Edition, 2011, 50, 7529-7532.	7.2	45
38	Arene CH Amination at Nickel in Terphenyl–Diphosphine Complexes with Labile Metal–Arene Interactions. Chemistry - A European Journal, 2013, 19, 16453-16460.	1.7	45
39	Radical Scission of Symmetrical 1,4-Dicarbonyl Compounds:  Câ^'C Bond Cleavage with Titanium(IV) Enolate Formation and Related Reactions. Organometallics, 2002, 21, 1329-1340.	1.1	43
40	Group 3 Dialkyl Complexes with Tetradentate (L, L, N, O; L = N, O, S) Monoanionic Ligands:Â Synthesis and Reactivity. Organometallics, 2007, 26, 1178-1190.	1.1	43
41	Role of oxido incorporation and ligand lability in expanding redox accessibility of structurally related Mn4 clusters. Chemical Science, 2013, 4, 3986.	3.7	40
42	Dioxygen Reactivity with a Ferrocene–Lewis Acid Pairing: Reduction to a Boron Peroxide in the Presence of Tris(pentafluorophenyl)borane. Angewandte Chemie - International Edition, 2014, 53, 12893-12896.	7.2	40
43	Metal-templated ligand architectures for trinuclear chemistry: tricopper complexes and their O ₂ reactivity. Chemical Science, 2013, 4, 785-790.	3.7	39
44	Bimetallic Zirconium Amine Bis(phenolate) Polymerization Catalysts: Enhanced Activity and Tacticity Control for Polyolefin Synthesis. Organometallics, 2014, 33, 3247-3250.	1.1	39
45	Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems. Inorganic Chemistry, 2015, 54, 1283-1292.	1.9	39
46	Ethylene Tetramerization Catalysis: Effects of Aluminum-Induced Isomerization of PNP to PPN Ligands. Organometallics, 2017, 36, 1640-1648.	1.1	39
47	Nitric Oxide Activation by Distal Redox Modulation in Tetranuclear Iron Nitrosyl Complexes. Journal of the American Chemical Society, 2015, 137, 14094-14106.	6.6	37
48	Arene non-innocence in dinuclear complexes of Fe, Co, and Ni supported by a para-terphenyl diphosphine. Chemical Communications, 2014, 50, 4427-4429.	2.2	36
49	Oxidative Coupling with Zr(IV) Supported by a Noninnocent Anthracene-Based Ligand: Application to the Catalytic Cotrimerization of Alkynes and Nitriles to Pyrimidines. Journal of the American Chemical Society, 2018, 140, 11906-11910.	6.6	36
50	Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C ₂ and C ₃ Product Streams. ACS Energy Letters, 2021, 6, 3538-3544.	8.8	36
51	Dioxygen Reduction by a Pd(0)–Hydroquinone Diphosphine Complex. Journal of the American Chemical Society, 2016, 138, 3443-3452.	6.6	35
52	Robust Chromium Precursors for Catalysis: Isolation and Structure of a Single-Component Ethylene Tetramerization Precatalyst. Journal of the American Chemical Society, 2019, 141, 6022-6029.	6.6	35
53	Intramolecular C–H and C–F Bond Oxygenation Mediated by a Putative Terminal Oxo Species in Tetranuclear Iron Complexes. Journal of the American Chemical Society, 2016, 138, 1486-1489.	6.6	34
54	Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. Structural Dynamics, 2017, 4, 054307.	0.9	34

#	Article	IF	CITATIONS
55	Tetranuclear [Mn ^{III} Mn ₃ ^{IV} O ₄] Complexes as Spectroscopic Models of the S ₂ State of the Oxygen Evolving Complex in Photosystem II. Journal of the American Chemical Society, 2018, 140, 17175-17187.	6.6	34
56	Aryl Ether Cleavage by Group 9 and 10 Transition Metals: Stoichiometric Studies of Selectivity and Mechanism. Organometallics, 2015, 34, 5254-5277.	1.1	33
57	Terminal Molybdenum Phosphides with d Electrons: Radical Character Promotes Coupling Chemistry. Angewandte Chemie - International Edition, 2017, 56, 14502-14506.	7.2	33
58	CO Coupling Chemistry of a Terminal Mo Carbide: Sequential Addition of Proton, Hydride, and CO Releases Ethenone. Journal of the American Chemical Society, 2019, 141, 15664-15674.	6.6	33
59	Activation of an Open Shell, Carbyne-Bridged Diiron Complex Toward Binding of Dinitrogen. Journal of the American Chemical Society, 2020, 142, 10059-10068.	6.6	33
60	In Pursuit of the Molybdenum(III) Tris(thiolate) Fragment:Â Unusual Structure of a Dimolybdenum μ-Nitrido Complex. Inorganic Chemistry, 2000, 39, 174-179.	1.9	32
61	A Thermodynamic Model for Redox-Dependent Binding of Carbon Monoxide at Site-Differentiated, High Spin Iron Clusters. Journal of the American Chemical Society, 2018, 140, 5569-5578.	6.6	29
62	Tuning of Metal Complex Electronics and Reactivity by Remote Lewis Acid Binding to π-Coordinated Pyridine Diphosphine Ligands. Organometallics, 2015, 34, 4753-4765.	1.1	28
63	Olefin Polymerization by Dinuclear Zirconium Catalysts Based on Rigid Teraryl Frameworks: Effects on Tacticity and Copolymerization Behavior. Organometallics, 2017, 36, 1915-1928.	1.1	27
64	Breaking Scaling Relationships in CO ₂ Reduction on Copper Alloys with Organic Additives. ACS Central Science, 2021, 7, 1756-1762.	5.3	26
65	Carbon dioxide cleavage by a Ni 2 complex supported by a binucleating bis(N-heterocyclic carbene) framework. Polyhedron, 2014, 84, 103-110.	1.0	25
66	A <i>trans</i> -Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper–Lewis Acid Complex. Journal of the American Chemical Society, 2016, 138, 5008-5011.	6.6	25
67	A Terminal Fe ^{III} –Oxo in a Tetranuclear Cluster: Effects of Distal Metal Centers on Structure and Reactivity. Journal of the American Chemical Society, 2019, 141, 9479-9484.	6.6	25
68	Redox Tuning via Ligand-Induced Geometric Distortions at a YMn ₃ O ₄ Cubane Model of the Biological Oxygen Evolving Complex. Inorganic Chemistry, 2019, 58, 14998-15003.	1.9	25
69	Trinuclear Nickel Complexes with Metal–Arene Interactions Supported by Tris- and Bis(phosphinoaryl)benzene Frameworks. Organometallics, 2013, 32, 6883-6886.	1.1	24
70	Accelerated Oxygen Atom Transfer and Câ^'H Bond Oxygenation by Remote Redox Changes in Fe ₃ Mnâ€lodosobenzene Adducts. Angewandte Chemie - International Edition, 2017, 56, 4772-4776.	7.2	23
71	<i>S</i> = 3 Ground State for a Tetranuclear Mn ^{IV} ₄ O ₄ Complex Mimicking the S ₃ State of the Oxygen-Evolving Complex. Journal of the American Chemical Society, 2020, 142, 3753-3761.	6.6	22
72	Stoichiometrically Activated Catalysts for Ethylene Tetramerization using Diphosphinoamine-Ligated Cr Tris(hydrocarbyl) Complexes. Organometallics, 2017, 36, 4107-4110.	1.1	21

#	Article	IF	CITATIONS
73	Isotopic labelling in ethylene oligomerization: addressing the issue of 1-octene <i>vs.</i> 1-hexene selectivity. Dalton Transactions, 2019, 48, 40-44.	1.6	21
74	Effects of Lewis Acidic Metal Ions (M) on Oxygen-Atom Transfer Reactivity of Heterometallic Mn ₃ MO ₄ Cubane and Fe ₃ MO(OH) and Mn ₃ MO(OH) Clusters. Inorganic Chemistry, 2019, 58, 2336-2345.	1.9	21
75	Molecular Mixedâ€Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts. Chemistry - A European Journal, 2015, 21, 13420-13430.	1.7	20
76	A CaMn ₄ O ₂ model of the biological oxygen evolving complex: synthesis via cluster expansion on a low symmetry ligand. Chemical Communications, 2017, 53, 6832-6835.	2.2	20
77	Inâ€Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO ₂ Reduction to Ethylene. Angewandte Chemie, 2019, 131, 17108-17114.	1.6	20
78	Effect of the Mn Oxidation State on Single-Molecule-Magnet Properties: Mn ^{III} vs Mn ^{IV} in Biologically Inspired DyMn ₃ O ₄ Cubanes. Inorganic Chemistry, 2016, 55, 6095-6099.	1.9	19
79	Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with Mn–OH ₂ /OH Motifs Relevant to H ₂ O Activation by the Oxygen Evolving Complex in Photosystem II. Journal of the American Chemical Society, 2018, 140, 10900-10908.	6.6	19
80	A Lowâ€Valent Molybdenum Nitride Complex: Reduction Promotes Carbonylation Chemistry. Angewandte Chemie - International Edition, 2018, 57, 9670-9674.	7.2	19
81	How calcium affects oxygen formation. Nature, 2014, 513, 495-496.	13.7	18
82	Modulation of Proton-Coupled Electron Transfer through Molybdenum–Quinonoid Interactions. Inorganic Chemistry, 2016, 55, 5337-5342.	1.9	18
83	Lewis Acid Accelerated Aryl Ether Bond Cleavage with Nickel: Orders of Magnitude Rate Enhancement Using AlMe ₃ . Chemistry - A European Journal, 2016, 22, 17173-17176.	1.7	18
84	Copolymerization of Ethylene and Long-Chain Functional α-Olefins by Dinuclear Zirconium Catalysts. Organometallics, 2021, 40, 1854-1858.	1.1	18
85	Heterometallic Effects in Trinuclear Complexes Supported by p-Terphenyl Diphosphine Ligands. Organometallics, 2015, 34, 4429-4432.	1.1	16
86	Tetranuclear Fe Clusters with a Varied Interstitial Ligand: Effects on the Structure, Redox Properties, and Nitric Oxide Activation. Inorganic Chemistry, 2017, 56, 13360-13367.	1.9	16
87	Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydrideâ€Proton Isomerism, and HER Reactivity. Angewandte Chemie - International Edition, 2018, 57, 16329-16333.	7.2	16
88	Calcium Valence-to-Core X-ray Emission Spectroscopy: A Sensitive Probe of Oxo Protonation in Structural Models of the Oxygen-Evolving Complex. Inorganic Chemistry, 2019, 58, 16292-16301.	1.9	15
89	Terminal Molybdenum Phosphides with d Electrons: Radical Character Promotes Coupling Chemistry. Angewandte Chemie, 2017, 129, 14694-14698.	1.6	14
90	CaMn ₃ ^{IV} O ₄ Cubane Models of the Oxygenâ€Evolving Complex: Spin Ground States <i>S</i> <9/2 and the Effect of Oxo Protonation. Angewandte Chemie - International Edition, 2021, 60, 17671-17679.	7.2	14

#	Article	IF	CITATIONS
91	Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethyleneâ€Acrylate Copolymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
92	Intramolecular Arene C–H to C–P Functionalization Mediated by Nickel(II) and Palladium(II). Organometallics, 2013, 32, 3161-3164.	1.1	13
93	Intramolecular C–H and C–F Bond Oxygenation by Site-Differentiated Tetranuclear Manganese Models of the OEC. Inorganic Chemistry, 2017, 56, 9044-9054.	1.9	13
94	Remote Ligand Modifications Tune Electronic Distribution and Reactivity in Site-Differentiated, High-Spin Iron Clusters: Flipping Scaling Relationships. Inorganic Chemistry, 2019, 58, 15971-15982.	1.9	13
95	Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase. Journal of the American Chemical Society, 2020, 142, 18795-18813.	6.6	13
96	Controlling Singlet Fission with Coordination Chemistry-Induced Assembly of Dipyridyl Pyrrole Bipentacenes. ACS Central Science, 2020, 6, 2088-2096.	5.3	13
97	Partial synthetic models of FeMoco with sulfide and carbyne ligands: Effect of interstitial atom in nitrogenase active site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
98	Selectivity of Câ^'H versus Câ^'F Bond Oxygenation by Homo―and Heterometallic Fe ₄ , Fe ₃ Mn, and Mn ₄ Clusters. Chemistry - A European Journal, 2017, 23, 10744-10748.	1.7	12
99	Dioxygen Reactivity with a Ferrocene–Lewis Acid Pairing: Reduction to a Boron Peroxide in the Presence of Tris(pentafluorophenyl)borane. Angewandte Chemie, 2014, 126, 13107-13110.	1.6	10
100	Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell. Analytical Chemistry, 2017, 89, 581-585.	3.2	10
101	Characterization of Cr-Hydrocarbyl Species via Pulse EPR in the Study of Ethylene Tetramerization Catalysis. Organometallics, 2020, 39, 4420-4429.	1.1	10
102	Terminal, Open-Shell Mo Carbide and Carbyne Complexes: Spin Delocalization and Ligand Noninnocence. Journal of the American Chemical Society, 2021, 143, 13091-13102.	6.6	10
103	Early Metal Di(pyridyl) Pyrrolide Complexes with Second Coordination Sphere Areneâ^ï€ Interactions: Ligand Binding and Ethylene Polymerization. ACS Omega, 2019, 4, 15879-15892.	1.6	7
104	A hemilabile diphosphine pyridine pincer ligand: σ- and π-binding in molybdenum coordination complexes. Polyhedron, 2020, 187, 114631.	1.0	7
105	Terminal Mo Carbide and Carbyne Reactivity: H ₂ Cleavage, B–C Bond Activation, and C–C Coupling. Organometallics, 2021, 40, 2881-2887.	1.1	6
106	Molecular Coatings Improve the Selectivity and Durability of CO ₂ Reduction Chalcogenide Photocathodes. ACS Energy Letters, 2022, 7, 1195-1201.	8.8	6
107	Metallomacrocycles as ligands: synthesis and characterisation of aluminium-bridged bisglyoximato complexes of palladium and iron. Dalton Transactions, 2012, 41, 8086.	1.6	5
108	Ligand architecture for triangular metal complexes: a high oxidation state Ni ₃ cluster with proximal metal arrangement. Chemical Communications, 2020, 56, 11279-11282.	2.2	5

#	Article	IF	CITATIONS
109	Heterometallic uranium/molybdenum nitride synthesis <i>via</i> partial N-atom transfer. Chemical Communications, 2022, 58, 4655-4658.	2.2	5
110	Phosphine-Phenoxide Nickel Catalysts for Ethylene/Acrylate Copolymerization: Olefin Coordination and Complex Isomerization Studies Relevant to the Mechanism of Catalysis. Organometallics, 2022, 41, 2119-2131.	1.1	5
111	Hydrogen Evolution Catalyzed by Aluminumâ€Bridged Cobalt Diglyoximate Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 3840-3845.	1.0	4
112	Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydrideâ€Proton Isomerism, and HER Reactivity. Angewandte Chemie, 2018, 130, 16567-16571.	1.6	4
113	Carbon Dioxide Reduction with Dihydrogen and Silanes at Low-Valent Molybdenum Terphenyl Diphosphine Complexes: Reductant Identity Dictates Mechanism. ACS Catalysis, 2021, 11, 13294-13302.	5.5	4
114	Accelerated Oxygen Atom Transfer and Câ^'H Bond Oxygenation by Remote Redox Changes in Fe 3 Mn″odosobenzene Adducts. Angewandte Chemie, 2017, 129, 4850-4854.	1.6	3
115	Mild electrochemical synthesis of metal phosphides with dibenzo-7-phosphanorbornadiene derivatives: mechanistic insights and application to proton reduction in water. Chemical Communications, 2018, 54, 767-770.	2.2	2
116	Molybdenum-Mediated Coupling of Carbon Monoxide to a C ₃ Product on a Single Metal Site. Inorganic Chemistry, 2022, 61, 7710-7714.	1.9	2
117	Mn ^{IV} ₄ O ₄ Model of the S ₃ Intermediate of the Oxygen-Evolving Complex: Effect of the Dianionic Disiloxide Ligand. Inorganic Chemistry, 2023, 62, 1791-1796.	1.9	2
118	CaMn 3 IV O 4 Cubane Models of the Oxygenâ€Evolving Complex: Spin Ground States S <9/2 and the Effect of Oxo Protonation. Angewandte Chemie, 2021, 133, 17812-17820.	1.6	1
119	Probing Redox Nonâ€innocence in Ironâ€carbene ({Fe=C(H)Ar}10â€11) Complexes by 1,2H and 13C Pulse EPR. Angewandte Chemie - International Edition, 2021, 60, 27220.	7.2	1
120	Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethyleneâ€Acrylate Copolymers. Angewandte Chemie, 0, , .	1.6	1
121	Hydrogen Evolution Catalyzed by Aluminum-Bridged Cobalt Diglyoximate Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 3728-3728.	1.0	0
122	A Lowâ€Valent Molybdenum Nitride Complex: Reduction Promotes Carbonylation Chemistry. Angewandte Chemie, 2018, 130, 9818-9822.	1.6	0
123	Probing Redox Nonâ€innocence in Ironâ€carbene ({Fe=C(H)Ar}10â€11) Complexes by 1,2H and 13C Pulse EPR. Angewandte Chemie, 2021, 133, 27426.	1.6	0