List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7031498/publications.pdf Version: 2024-02-01

FEIXIANC W/II

#	Article	IF	CITATIONS
1	Li-ion battery materials: present and future. Materials Today, 2015, 18, 252-264.	14.2	5,353
2	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49, 1569-1614.	38.1	1,326
3	Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy and Environmental Science, 2017, 10, 435-459.	30.8	545
4	Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. Journal of Power Sources, 2013, 222, 318-325.	7.8	317
5	Lithium metal anodes: Present and future. Journal of Energy Chemistry, 2020, 48, 145-159.	12.9	311
6	Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement. Advanced Materials, 2015, 27, 101-108.	21.0	304
7	Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. Journal of Energy Chemistry, 2020, 43, 220-235.	12.9	272
8	Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano, 2021, 15, 210-239.	14.6	199
9	In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSlâ€Based Organic Electrolytes. Advanced Energy Materials, 2015, 5, 1401792.	19.5	189
10	Micro―and Mesoporous Carbideâ€Derived Carbon–Selenium Cathodes for Highâ€Performance Lithium Selenium Batteries. Advanced Energy Materials, 2015, 5, 1400981.	19.5	144
11	Graphene–Li ₂ S–Carbon Nanocomposite for Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 1333-1340.	14.6	144
12	Harnessing Steric Separation of Freshly Nucleated Li ₂ S Nanoparticles for Bottomâ€Up Assembly of Highâ€Performance Cathodes for Lithiumâ€Sulfur and Lithiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400196.	19.5	135
13	Nanoporous Li ₂ S and MWCNT-linked Li ₂ S powder cathodes for lithium-sulfur and lithium-ion battery chemistries. Journal of Materials Chemistry A, 2014, 2, 6064-6070.	10.3	128
14	A Sulfur–Limoneneâ€Based Electrode for Lithium–Sulfur Batteries: Highâ€Performance by Selfâ€Protection. Advanced Materials, 2018, 30, e1706643.	21.0	114
15	A Hierarchical Particle–Shell Architecture for Longâ€Term Cycle Stability of Li ₂ S Cathodes. Advanced Materials, 2015, 27, 5579-5586.	21.0	111
16	Recent Advances and Applications Toward Emerging Lithium–Sulfur Batteries: Working Principles and Opportunities. Energy and Environmental Materials, 2022, 5, 777-799.	12.8	106
17	Layered LiTiO ₂ for the protection of Li ₂ S cathodes against dissolution: mechanisms of the remarkable performance boost. Energy and Environmental Science, 2018, 11, 807-817.	30.8	103
18	Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018, 21, 960-973.	14.2	103

#	Article	IF	CITATIONS
19	Infiltrated Porous Polymer Sheets as Freeâ€Standing Flexible Lithiumâ€Sulfur Battery Electrodes. Advanced Materials, 2016, 28, 6365-6371.	21.0	102
20	Solutionâ€Based Processing of Graphene–Li ₂ S Composite Cathodes for Lithiumâ€ion and Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2014, 31, 639-644.	2.3	99
21	Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 530, 30-35.	5.5	96
22	Petal-like Li4Ti5O12–TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale, 2013, 5, 6936.	5.6	95
23	Boosting High-Performance in Lithium–Sulfur Batteries via Dilute Electrolyte. Nano Letters, 2020, 20, 5391-5399.	9.1	93
24	3D Honeycomb Architecture Enables a Highâ€Rate and Long‣ife Iron (III) Fluoride–Lithium Battery. Advanced Materials, 2019, 31, e1905146.	21.0	84
25	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€Storage Performance. Angewandte Chemie - International Edition, 2019, 58, 7238-7243.	13.8	80
26	Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon, 2020, 161, 162-168.	10.3	76
27	Airâ€stable inorganic solidâ€state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InformaÄnÃ-Materiály, 2022, 4, .	17.3	71
28	Metal–Organic Framework-Derived Nanoconfinements of CoF ₂ and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. ACS Nano, 2021, 15, 1509-1518.	14.6	69
29	Enhancing the Stability of Sulfur Cathodes in Li–S Cells via in Situ Formation of a Solid Electrolyte Layer. ACS Energy Letters, 2016, 1, 373-379.	17.4	61
30	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. Advanced Functional Materials, 2018, 28, 1707179.	14.9	61
31	Hydrogen titanate and TiO2 nanowires as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 12675.	6.7	55
32	Low-temperature synthesis of nano-micron Li4Ti5O12 by an aqueous mixing technique and its excellent electrochemical performance. Journal of Power Sources, 2012, 202, 374-379.	7.8	55
33	Nanostructured Li2Se cathodes for high performance lithium-selenium batteries. Nano Energy, 2016, 27, 238-246.	16.0	54
34	Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge. Nano Energy, 2017, 40, 170-179.	16.0	53
35	Hydrogen peroxide leaching of hydrolyzed titania residue prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid. International Journal of Mineral Processing, 2011, 98, 106-112.	2.6	51
36	Natural Vermiculite Enables Highâ€Performance in Lithium–Sulfur Batteries via Electrical Double Layer Effects. Advanced Functional Materials, 2019, 29, 1902820.	14.9	50

#	Article	IF	CITATIONS
37	Boosting Lithium Storage in Free-Standing Black Phosphorus Anode via Multifunction of Nanocellulose. ACS Applied Materials & Interfaces, 2020, 12, 31628-31636.	8.0	48
38	Recent Developments of Two-Dimensional Anode Materials and Their Composites in Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7440-7461.	5.1	48
39	In situ surface protection for enhancing stability and performance of conversion-type cathodes. MRS Energy & Sustainability, 2017, 4, 1.	3.0	47
40	Preparation of TiO2 from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of Fe3+ with EDTA during hydrolysis. Advanced Powder Technology, 2013, 24, 60-67.	4.1	46
41	A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium. Nature Communications, 2017, 8, 13888.	12.8	46
42	In Situ Surface Protection for Enhancing Stability and Performance of LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ at 4.8 V: The Working Mechanisms. , 2020, 2, 280-290.		44
43	Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte. Journal of Power Sources, 2015, 294, 494-500.	7.8	41
44	A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 3711-3715.	5.5	40
45	Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 3849-3854.	2.5	40
46	Characterization of spherical-shaped Li4Ti5O12 prepared by spray drying. Electrochimica Acta, 2012, 78, 331-339.	5.2	38
47	Li4Ti5O12/Reduced Graphene Oxide composite as a high rate capability material for lithium ion batteries. Solid State Ionics, 2013, 236, 30-36.	2.7	37
48	Oxygen-induced lithiophilicity of tin-based framework toward highly stable lithium metal anode. Chemical Engineering Journal, 2020, 394, 124848.	12.7	36
49	Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats. PLoS ONE, 2014, 9, e97436.	2.5	34
50	Spherical Li4Ti5O12 synthesized by spray drying from a different kind of solution. Journal of Alloys and Compounds, 2012, 540, 39-45.	5.5	33
51	Stabilization of selenium cathodes via in situ formation of protective solid electrolyte layer. Journal of Materials Chemistry A, 2014, 2, 18898-18905.	10.3	32
52	A 3D conducting scaffold with in-situ grown lithiophilic Ni2P nanoarrays for high stability lithium metal anodes. Journal of Energy Chemistry, 2021, 54, 301-309.	12.9	32
53	Synthesis and Redox Mechanism of Cation-Disordered, Rock-Salt Cathode-Material Li–Ni–Ti–Nb–O Compounds for a Li-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 35777-35787.	8.0	31
54	High-performance lithium-ion battery anodes based on Mn3O4/nitrogen-doped porous carbon hybrid structures. Journal of Alloys and Compounds, 2019, 775, 51-58.	5.5	31

#	Article	IF	CITATIONS
55	Synthesis of chromium-doped lithium titanate microspheres as high-performance anode material for lithium ion batteries. Ceramics International, 2014, 40, 13195-13204.	4.8	30
56	Preparation of synthetic rutile and metal-doped LiFePO4 from ilmenite. Powder Technology, 2010, 199, 293-297.	4.2	29
57	Simple preparation of petal-like TiO2 nanosheets as anode materials for lithium-ion batteries. Ceramics International, 2014, 40, 16805-16810.	4.8	29
58	Toward True Lithium-Air Batteries. Joule, 2018, 2, 815-817.	24.0	29
59	Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & amp; related batteries. Materials Today, 2021, 49, 253-270.	14.2	29
60	Preparation and characterization of spinel Li4Ti5O12 anode material from industrial titanyl sulfate solution. Journal of Alloys and Compounds, 2011, 509, 596-601.	5.5	28
61	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	30.8	25
62	Preparation of TiO2 nanosheets and Li4Ti5O12 anode material from natural ilmenite. Powder Technology, 2011, 213, 192-198.	4.2	24
63	Tuning Low Concentration Electrolytes for High Rate Performance in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2020, 167, 100512.	2.9	24
64	High performance LiV3O8 cathode materials prepared by spray-drying method. Electrochimica Acta, 2012, 71, 206-212.	5.2	23
65	A novel process for producing synthetic rutile and LiFePO4 cathode material from ilmenite. Journal of Alloys and Compounds, 2010, 506, 271-278.	5.5	21
66	Preparation of high-value TiO2 nanowires by leaching of hydrolyzed titania residue from natural ilmenite. Hydrometallurgy, 2013, 140, 82-88.	4.3	21
67	Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance. Ionics, 2013, 19, 717-723.	2.4	20
68	Effect of remote ischemic preconditioning on hepatic ischemia-reperfusion injury in patients undergoing liver resection: a randomized controlled trial. Minerva Anestesiologica, 2020, 86, 252-260.	1.0	19
69	Fiber Ring Laser Sensor for Temperature Measurement. Journal of Lightwave Technology, 2010, , .	4.6	17
70	Inducible Lentivirus-Mediated siRNA against TLR4 Reduces Nociception in a Rat Model of Bone Cancer Pain. Mediators of Inflammation, 2015, 2015, 1-7.	3.0	17
71	Electrochemical performance of expanded graphite prepared from anthracite via a microwave method. Fuel Processing Technology, 2022, 227, 107100.	7.2	16
72	Inexpensive synthesis of anatase TiO2 nanowires by a novel method and its electrochemical characterization. Materials Letters, 2011, 65, 1514-1517.	2.6	15

#	Article	IF	CITATIONS
73	Small Interference RNA Targeting TLR4 Gene Effectively Attenuates Pulmonary Inflammation in a Rat Model. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	15
74	Conductive surface modification with copper of Li4Ti5O12 as anode materials for Li-ion batteries. Materials Letters, 2013, 107, 273-275.	2.6	14
75	Lentiviral‑mediated inducible silencing of TLR4 attenuates neuropathic pain in a rat model of chronic constriction injury. Molecular Medicine Reports, 2018, 18, 5545-5551.	2.4	10
76	Hypoxia preconditioning attenuates lung injury after thoracoscopic lobectomy in patients with lung cancer: a prospective randomized controlled trial. BMC Anesthesiology, 2019, 19, 209.	1.8	9
77	Lentivirus Mediated siRNA against GluN2B Subunit of NMDA Receptor Reduces Nociception in a Rat Model of Neuropathic Pain. BioMed Research International, 2014, 2014, 1-7.	1.9	7
78	Fabrication of wafer-scale nanopatterned sapphire substrate by hybrid nanoimprint lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	7
79	Preparation and characterization of Li4Ti5O12 from ilmenite. Powder Technology, 2010, 204, 198-202.	4.2	6
80	Enhancing Electrochemical Performance of CoF ₂ –Li Batteries via Honeycombed Nanocomposite Cathode. Energy & Fuels, 0, , .	5.1	6
81	Synthesis of high performance Li4Ti5O12 microspheres and TiO2 nanowires from natural ilmenite. RSC Advances, 2014, 4, 40111-40119.	3.6	5
82	Transgenic increase in the βâ€endorphin concentration in cerebrospinal fluid alleviates morphineâ€primed relapse behavior through the μ opioid receptor in rats. Journal of Medical Virology, 2019, 91, 1158-1167.	5.0	5
83	Honeycomb Structured α-MnS@N-HC Nanocomposite Fabricated by Sol-Gel Pyrolysis Blowing Method and Its High-Performance Lithium Storage. Materials Today Energy, 2021, 22, 100876.	4.7	5
84	Bilirubin Induces Pain Desensitization in Cholestasis by Activating 5-Hydroxytryptamine 3A Receptor in Spinal Cord. Frontiers in Cell and Developmental Biology, 2021, 9, 605855.	3.7	4
85	Lithium-Ion Batteries. , 2021, , .		3
86	Inhibition of the norepinephrine transporter rescues vascular hyporeactivity to catecholamine in obstructive jaundice. European Journal of Pharmacology, 2021, 900, 174055.	3.5	3
87	Nanostructured composites for high energy batteries and supercapacitors. , 2015, , .		2
88	Metal Fluoride–Lithium Batteries: 3D Honeycomb Architecture Enables a Highâ€Rate and Long‣ife Iron (III) Fluoride–Lithium Battery (Adv. Mater. 43/2019). Advanced Materials, 2019, 31, 1970304.	21.0	2
89	Recent progress in the design of anionic redox in layered oxide electrodes: A mini review. Electrochemistry Communications, 2021, 124, 106969.	4.7	2
90	Efficacy Assessment of Phentolamine Accompanied by Lidocaine Subcutaneously under Ultrasound Guidance on Radial Artery Catheterization in Pediatric Patients. BioMed Research International, 2022, 2022, 1-8.	1.9	2

FEIXIANG WU

#	Article	IF	CITATIONS
91	Novel Synthesis of LiFePO4 and Li4Ti5O12 from Natural Ilmenite. Chemistry Letters, 2010, 39, 806-807.	1.3	1
92	Lithium Sulfide Cathodes: A Hierarchical Particle-Shell Architecture for Long-Term Cycle Stability of Li2 S Cathodes (Adv. Mater. 37/2015). Advanced Materials, 2015, 27, 5578-5578.	21.0	1
93	Engineered endomorphin-2 gene: A novel therapy for improving morphine reinstatement in CPP model of rats by using deficient adenovirus as the vector. Biochemical and Biophysical Research Communications, 2019, 513, 141-146.	2.1	1
94	Bioinformatics Analysis for Identifying Pertinent Pathways and Genes in Sepsis. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-7.	1.3	0