
Robert J Duronio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nature Reviews Genetics, 2008, 9, 843-854.	16.3	645
2	Endoreplication: polyploidy with purpose. Genes and Development, 2009, 23, 2461-2477.	5.9	479
3	Endoreplication and polyploidy: insights into development and disease. Development (Cambridge), 2013, 140, 3-12.	2.5	289
4	Signaling Pathways that Control Cell Proliferation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008904-a008904.	5.5	271
5	Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Current Opinion in Cell Biology, 2002, 14, 692-699.	5.4	233
6	Interrogating the Function of Metazoan Histones using Engineered Gene Clusters. Developmental Cell, 2015, 32, 373-386.	7.0	139
7	WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1–CUL4–ROC1 ligase. Genes and Development, 2008, 22, 866-871.	5.9	135
8	Fluctuations in Cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila. Current Biology, 1998, 8, 235-238.	3.9	133
9	New insights into cell cycle control from the Drosophila endocycle. Oncogene, 2005, 24, 2765-2775.	5.9	131
10	Control of Drosophila endocycles by E2F and CRL4CDT2. Nature, 2011, 480, 123-127.	27.8	127
11	The Contribution of E2F-Regulated Transcription to Drosophila PCNA Gene Function. Current Biology, 2003, 13, 53-58.	3.9	118
12	Intrinsic Negative Cell Cycle Regulation Provided by PIP Box- and Cul4Cdt2-Mediated Destruction of E2f1 during S Phase. Developmental Cell, 2008, 15, 890-900.	7.0	111
13	Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biology, 2017, 14, 726-738.	3.1	104
14	Mutations of the <i>Drosophila dDP</i> , <i>dE2F</i> , and <i>cyclin E</i> Genes Reveal Distinct Roles for the E2F-DP Transcription Factor and Cyclin E during the G ₁ -S Transition. Molecular and Cellular Biology, 1998, 18, 141-151.	2.3	101
15	Comparative analysis of the Î ² transducin family with identification of several new members includingPWP1, a nonessential gene ofSaccharomyces cerevisiae that is divergently transcribed fromNMT1. Proteins: Structure, Function and Bioinformatics, 1992, 13, 41-56.	2.6	95
16	Developmental Control of Histone mRNA and dSLBP Synthesis during Drosophila Embryogenesis and the Role of dSLBP in Histone mRNA 3′ End Processing In Vivo. Molecular and Cellular Biology, 2002, 22, 2267-2282.	2.3	89
17	<i>Drosophila</i> histone locus bodies form by hierarchical recruitment of components. Journal of Cell Biology, 2011, 193, 677-694.	5.2	81
18	A Genome-wide RNA Interference Screen Reveals thatÂVariant Histones Are Necessary for Replication-Dependent Histone Pre-mRNA Processing. Molecular Cell, 2007, 28, 692-699.	9.7	79

#	Article	IF	CITATIONS
19	Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. Journal of Cell Biology, 2016, 213, 557-570.	5.2	75
20	<i>Drosophila E2f2</i> promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development (Cambridge), 2001, 128, 5085-5098.	2.5	73
21	Developmental and Cell Cycle Regulation of the Drosophila Histone Locus Body. Molecular Biology of the Cell, 2007, 18, 2491-2502.	2.1	71
22	Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes and Development, 2016, 30, 1866-1880.	5.9	67
23	Drosophila Roc1a Encodes a RING-H2 Protein with a Unique Function in Processing the Hh Signal Transducer Ci by the SCF E3 Ubiquitin Ligase. Developmental Cell, 2002, 2, 757-770.	7.0	65
24	A Sequence in the Drosophila H3-H4 Promoter Triggers Histone Locus Body Assembly and Biosynthesis of Replication-Coupled Histone mRNAs. Developmental Cell, 2013, 24, 623-634.	7.0	64
25	Transcriptional Repressor Functions of Drosophila E2F1 and E2F2 Cooperate To Inhibit Genomic DNA Synthesis in Ovarian Follicle Cells. Molecular and Cellular Biology, 2003, 23, 2123-2134.	2.3	59
26	Cell cycle: To differentiate or not to differentiate?. Current Biology, 2000, 10, R302-R304.	3.9	55
27	CDK-Regulated Phase Separation Seeded by Histone Genes Ensures Precise Growth and Function of Histone Locus Bodies. Developmental Cell, 2020, 54, 379-394.e6.	7.0	55
28	3′ End Processing of Drosophila melanogaster Histone Pre-mRNAs: Requirement for Phosphorylated Drosophila Stem-Loop Binding Protein and Coevolution of the Histone Pre-mRNA Processing System. Molecular and Cellular Biology, 2002, 22, 6648-6660.	2.3	48
29	Histone locus regulation by the <i>Drosophila</i> dosage compensation adaptor protein CLAMP. Genes and Development, 2017, 31, 1494-1508.	5.9	47
30	Cdt1 and Cdc6 Are Destabilized by Rereplication-induced DNA Damage. Journal of Biological Chemistry, 2008, 283, 25356-25363.	3.4	43
31	Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity. ELife, 2017, 6, .	6.0	42
32	Interaction between FLASH and Lsm11 is essential for histone pre-mRNA processing in vivo in <i>Drosophila</i> . Rna, 2011, 17, 1132-1147.	3.5	41
33	A Screen for Mutations That Suppress the Phenotype of <i>Drosophila armadillo</i> , the β-Catenin Homolog. Genetics, 2000, 155, 1725-1740.	2.9	41
34	U7 snRNA mutations in Drosophila block histone pre-mRNA processing and disrupt oogenesis. Rna, 2006, 12, 396-409.	3.5	40
35	Genetic and biochemical characterization of Drosophila Snipper: A promiscuous member of the metazoan 3'hExo/ERI-1 family of 3' to 5' exonucleases. Rna, 2006, 12, 2103-2117.	3.5	36
36	Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster. BMC Genomics, 2018, 19, 157.	2.8	34

#	Article	IF	CITATIONS
37	Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genetics, 2019, 15, e1007932.	3.5	34
38	Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the <i>Drosophila </i> histone locus body. Molecular Biology of the Cell, 2015, 26, 1559-1574.	2.1	33
39	Chromatin conformation and transcriptional activity are permissive regulators of DNA replication in <i>Drosophila</i> . Genome Research, 2018, 28, 1688-1700.	5.5	29
40	Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development (Cambridge), 2015, 142, 2740-51.	2.5	28
41	Drosophila Stem-Loop Binding Protein Intracellular Localization Is Mediated by Phosphorylation and Is Required for Cell Cycle-regulated Histone mRNA Expression. Molecular Biology of the Cell, 2004, 15, 1112-1123.	2.1	27
42	The Drosophila U7 snRNP proteins Lsm10 and Lsm11 are required for histone pre-mRNA processing and play an essential role in development. Rna, 2009, 15, 1661-1672.	3.5	27
43	Targeted Disruption of Drosophila Roc1b Reveals Functional Differences in the Roc Subunit of Cullin-dependent E3 Ubiquitin Ligases. Molecular Biology of the Cell, 2004, 15, 4892-4903.	2.1	26
44	Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in <i>Drosophila</i> . Nucleic Acids Research, 2016, 44, gkw333.	14.5	24
45	Rbf1-independent termination of E2f1-target gene expression during early Drosophila embryogenesis. Development (Cambridge), 2007, 134, 467-478.	2.5	23
46	Cancer Cell Biology: Myc Wins the Competition. Current Biology, 2004, 14, R425-R427.	3.9	22
47	EnD-Seq and AppEnD: sequencing 3′ ends to identify nontemplated tails and degradation intermediates. Rna, 2015, 21, 1375-1389.	3.5	22
48	Functional Redundancy of Variant and Canonical Histone H3 Lysine 9 Modification in <i>Drosophila</i> . Genetics, 2018, 208, 229-244.	2.9	21
49	Developing S-phase control. Genes and Development, 2012, 26, 746-750.	5.9	18
50	Expression of an S phase-stabilized version of the CDK inhibitor Dacapo can alter endoreplication. Development (Cambridge), 2015, 142, 4288-98.	2.5	18
51	Identifying Determinants of Cullin Binding Specificity Among the Three Functionally Different Drosophila melanogaster Roc Proteins via Domain Swapping. PLoS ONE, 2008, 3, e2918.	2.5	18
52	Loss of the Histone Pre-mRNA Processing Factor Stem-Loop Binding Protein in Drosophila Causes Genomic Instability and Impaired Cellular Proliferation. PLoS ONE, 2009, 4, e8168.	2.5	18
53	Establishing links between developmental signaling pathways and cell-cycle regulation in Drosophila. Current Opinion in Genetics and Development, 1999, 9, 81-88.	3.3	16
54	Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions. Nucleus, 2014, 5, 613-625.	2.2	16

#	Article	IF	CITATIONS
55	Normal regulation of Rbf1/E2f1 target genes in <i>Drosophila</i> type 1 protein phosphatase mutants. Developmental Dynamics, 2007, 236, 2567-2577.	1.8	15
56	S Phase–Coupled E2f1 Destruction Ensures Homeostasis in Proliferating Tissues. PLoS Genetics, 2012, 8, e1002831.	3.5	15
57	Superresolution light microscopy of the <i>Drosophila</i> histone locus body reveals a core–shell organization associated with expression of replication–dependent histone genes. Molecular Biology of the Cell, 2021, 32, 942-955.	2.1	15
58	Developmental Control of Growth and Cell Cycle Progression in <i>Drosophila</i> . , 2005, 296, 069-094.		14
59	Cell cycle: Flies teach an old dogma new tricks. Current Biology, 2001, 11, R178-R181.	3.9	13
60	A population of G2-arrested cells are selected as sensory organ precursors for the interommatidial bristles of the Drosophila eye. Developmental Biology, 2017, 430, 374-384.	2.0	13
61	stringcdc25 and cyclin E are required for patterned histone expression at different stages of Drosophila embryonic development. Developmental Biology, 2004, 274, 82-93.	2.0	12
62	Cell Type–dependent Requirement for PIP Box–regulated Cdt1 Destruction During S Phase. Molecular Biology of the Cell, 2010, 21, 3639-3653.	2.1	12
63	Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research. DMM Disease Models and Mechanisms, 2017, 10, 1381-1389.	2.4	12
64	Rif1 Functions in a Tissue-Specific Manner To Control Replication Timing Through Its PP1-Binding Motif. Genetics, 2020, 215, 75-87.	2.9	12
65	H3K9 Promotes Under-Replication of Pericentromeric Heterochromatin in Drosophila Salivary Gland Polytene Chromosomes. Genes, 2019, 10, 93.	2.4	11
66	<i>Drosophila</i> histone locus body assembly and function involves multiple interactions. Molecular Biology of the Cell, 2020, 31, 1525-1537.	2.1	11
67	Atypical E2Fs drive atypical cell cycles. Nature Cell Biology, 2012, 14, 1124-1125.	10.3	9
68	An Animal Model for Genetic Analysis of Multi-Gene Families: Cloning and Transgenesis of Large Tandemly Repeated Histone Gene Clusters. Methods in Molecular Biology, 2018, 1832, 309-325.	0.9	8
69	Phasing in heterochromatin during development. Genes and Development, 2019, 33, 379-381.	5.9	7
70	Characterization of null and hypomorphic alleles of the Drosophila <i>l(2)dtl/cdt2</i> gene. Fly, 2012, 6, 173-183.	1.7	5
71	Fate mapping during regeneration: Cells that undergo compensatory proliferation in damaged Drosophila eye imaginal discs differentiate into multiple retinal accessory cell types. Developmental Biology, 2018, 444, 43-49.	2.0	4
72	Using Drosophila S2 Cells to Measure S phase-Coupled Protein Destruction via Flow Cytometry. Methods in Molecular Biology, 2011, 782, 205-219.	0.9	3

#	Article	IF	CITATIONS
73	Genome Stress Response in Early Development. Developmental Cell, 2014, 29, 375-376.	7.0	2
74	Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in <i>Drosophila melanogaster</i> . Genetics, 2022, , .	2.9	2
75	A Breath of Fresh Air for Cyclin D/Cdk4. Developmental Cell, 2004, 6, 163-164.	7.0	1
76	Developmental regulation of replication-coupled protein destruction. Cell Cycle, 2011, 10, 859-860.	2.6	1
77	Deciding when to exit. ELife, 2021, 10, .	6.0	1
78	The many fates of tissue regeneration. PLoS Genetics, 2018, 14, e1007728.	3.5	0
79	The awesome power of histone genetics. Molecular Cell, 2021, 81, 1593-1595.	9.7	0
80	Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Journal of Cell Science, 2015, 128, e1.1-e1.1.	2.0	0